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Abstract 

I 

ABSTRACT 

Transversely isotropic rocks, making up around 75% of the earth’s surface, are 

widely encountered in civil, mining, petroleum, geothermal and radioactive-waste 

disposal engineering. In Hong Kong, the rock cavern development plan has commenced 

in recent years to increase the land supply and improve the environment. Some strategic 

cavern areas are also inevitably located in anisotropic formations. Anisotropy, as one of 

the most distinct features possessed by these kind of rocks, generally originates from the 

mineral foliation in metamorphic rocks, the stratification in sedimentary rocks, and the 

discontinuities in rock masses due to stress and geological history. Size effect is another 

important characteristic owned by brittle and semi-brittle rocks. Numerous investigations 

into size effect in isotropic rocks have been conducted, and many size-effect models have 

been proposed for isotropic rocks. However, considering the influence of anisotropy, size 

effect in transversely isotropic rocks is very different from that in isotropic rocks. To date, 

there are few studies in relation to size effect in transversely isotropic rocks. 

In this study, a transversely isotropic slate rock from a quarry was obtained as the 

test material. The first principal objective is to investigate the anisotropy and size effect 

in slate under indirect tensile conditions. A series of Brazilian tests were performed on 

slate samples with different diameters at different anisotropic angles. Size effects on 

elastic properties, indirect tensile strength and fracture pattern were analysed. Size effect 

on indirect tensile strength was found to be correlated with the anisotropy. A unified size-

effect relation was proposed and validated against the experimental data to capture the 

ascending and descending size-effect trends and the relationship among indirect tensile 

strength, sample size and anisotropic angle. Furthermore, the influence of three-

dimensional anisotropy on the tensile behaviour of transversely isotropic rock was 
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investigated using a particle-based discrete element approach. Considering various 

foliation orientations relative to loading direction and sample axis, the tensile strength, 

fracture mechanism and micro-cracking were systematically studied. 

The second principal objective is to investigate the anisotropy and size effect in slate 

under compressive conditions. A series of uniaxial and triaxial compression tests were 

conducted on slate samples. In response to the test results, a size-effect model developed 

from coal was extended to the transversely isotropic rock. Both uniaxial and triaxial 

compressive strengths were found to follow a cosine relation. It was also found that the 

size-effect behaviours in uniaxial and triaxial compressive strengths were similar. Two 

size-dependent failure criteria were proposed by incorporating the size-effect model for 

uniaxial compressive strength into the modified Hoek-Brown and Saeidi failure criteria, 

respectively, and were verified against the experimental data. For the first time, the 

relationship among compressive strength, specimen size, anisotropic angle and confining 

pressure was comprehensively captured for transversely isotropic rock. Lastly, without 

evident size effect, the anisotropic triaxial residual strength was captured well by an 

improved cohesion loss model. Two equations delineating the range for ratio of residual 

to peak strength were proposed for transversely isotropic rocks. 

Overall, these findings in slate may be applicable to other transversely isotropic 

rocks. 
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CHAPTER 1 INTRODUCTION 

1.1 Research motivation 

Size effect is an important characteristic of brittle and semi-brittle materials such as rock 

and concrete; the term refers to the influence of sample size on measured mechanical 

properties. Although large-scale in situ tests can accurately estimate the strength and 

deformation properties of the surrounding rocks or rock masses of underground structures 

(e.g., tunnels, caverns, mining stopes), they are not always practical or economical 

considering the difficulty of performing such tests or the time and economic costs 

incurred by doing so. A particularly promising alternative method involves scaling up the 

strength and elasticity properties of intact rocks tested in the laboratory to match those of 

rocks or rock masses in practical engineering. At this point, a proper size-effect model is 

essential. 

There have been a great many investigations into size effect in concrete or intact rocks 

under different stress conditions, including uniaxial compressive, indirect tensile, point 

load and triaxial compressive testing. Four classical types of size-effect models have been 

established based on the theories of statistics, fracture energy, multifractality and mixed 

fractals with fracture energy. Masoumi et al. (2015) presented another size-effect model, 

viz., the unified size-effect law (USEL), capturing both the ascending and descending 

uniaxial compressive strength trends of six rock types. 

Nevertheless, these size-effect models have a limitation: the rock is assumed to be 

isotropic. Natural rocks, however, are more or less anisotropic. The anisotropy in rocks is 

reflected by the different physical and mechanical properties in different directions. 

Typical anisotropic rocks include sedimentary rocks (shale, siltstone, claystone, 

sandstone, etc.) and metamorphic rocks (slate, phyllite, schist, gneiss, etc.). Because of 

their stratified or foliated structures, these rocks can further be treated as transversely 

isotropic material, in which one privileged direction exists and material behaviour has 

rotational symmetry with regard to that direction. Although the earth’s crust is composed 

of approximately 95% igneous rocks and 5% sedimentary and metamorphic rocks, 

sedimentary and metamorphic rocks make up around 75% of the earth’s surface. As a 
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result, transversely isotropic rocks are widely encountered in civil, mining, petroleum, 

geothermal, geo-environmental and radioactive waste disposal engineering. In Hong 

Kong, to increase land supply and improve local environment, a plan for rock cavern 

development has commenced in recent years, and some strategic cavern areas are also, 

inevitably, located in anisotropic formations (Sewell 2000; Wallace and Ng 2016). 

Anisotropy in the strength and deformation behaviours of transversely isotropic rocks has 

been extensively studied for decades using analytical, experimental and numerical 

approaches. Five independent elastic constants are employed to describe the different 

deformation behaviours in directions along and perpendicular to the plane of transverse 

isotropy. Moreover, numerous failure criteria have been proposed to capture the 

anisotropic tensile strength of transversely isotropic rocks, such as the Hobbs–Barron 

criterion and Lee–Pietruszczak criterion, which are based on the Griffith crack theory and 

the single plane of weakness theory, respectively. In regard to uniaxial and triaxial 

compressive strength, a great many failure criteria have been proposed using 

mathematical, empirical and discontinuous approaches. For example, the empirical 

equation developed initially by Jaeger (1960) and improved by Donath (1961) is used 

most commonly in uniaxial compression conditions. The modified Hoek–Brown criterion 

and Saeidi failure criterion (Saeidi et al. 2014) can provide good predictions for many 

transversely isotropic rocks in conventional triaxial conditions. In contrast, the failure 

criteria for transversely isotropic rocks subject to true triaxial stress states are less 

investigated because of the complexity. Until recently, Pei et al. (2018) proposed a failure 

criterion with which to describe anisotropic strength in true triaxial conditions by 

combining the anisotropic Matsuoka–Nakai criterion and the Coulomb criterion. This has 

been validated by true triaxial test data on chlorite schist and Chichibu greenschist. 

However, none of these proposed failure criteria for transversely isotropic rocks 

incorporate the size effect. Also, no proposed failure criteria have involved the residual 

strength of transversely isotropic rocks. 

Is there a relationship between size effect and anisotropy in transversely isotropic rock? 

How do size effect and anisotropy in transversely isotropic rocks alter with stress 

conditions? These questions must be answered. However, to the author’s knowledge, 

scarcely any studies have focused on the size effect while considering the influence of 

anisotropy in transversely isotropic rocks. Additionally, no size-dependent failure criteria 
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have been proposed with which to predict the strength of transversely isotropic rocks 

subject to different stresses. Accordingly, the research presented in this thesis aims to fill 

these gaps. 

1.2 Research objectives 

This thesis is intended to conduct a systematic study of size effect and anisotropy in 

transversely isotropic rock under different stress conditions, including indirect tensile, 

uniaxial and triaxial compressive loading. The main objectives of this thesis are as follows: 

1. To propose a size-dependent failure criterion for predicting the anisotropic tensile 

strength of transversely isotropic rocks. Comprehensive indirect tensile tests are 

conducted to obtain the laws governing variations in elastic properties, indirect 

tensile strength, fracture patterns and transverse strains of transversely isotropic rock 

with sample size and anisotropic angle. 

2. To propose size-dependent failure criteria for predicting the anisotropic uniaxial and 

triaxial compressive strength of transversely isotropic rocks, and to discuss their 

applicabilities. Comprehensive uniaxial and triaxial compression tests are performed 

to obtain the laws governing variations in compressive strength of transversely 

isotropic rock with sample size, anisotropic angle and confining pressure. 

3. To put forward a viable failure criterion describing the residual strength of 

transversely isotropic rocks by incorporating the size dependency while also 

establishing the relationship among the residual strength, peak strength and confining 

pressure for transversely isotropic rocks. 

4. To investigate the roles of model size and particle size distribution in the mechanical 

properties of isotropic rock using flat-joint model, allowing further study of the three-

dimensional effect of anisotropy on the tensile behaviour of transversely isotropic 

rock using a combination of the flat-joint and smooth-joint models. Also, to establish 

a commonly accepted standard for the selection of model size and particle size 

distribution for three-dimensional discrete element simulation. 

1.3 Thesis outline 

The entire thesis is divided into seven chapters, organized as follows: 
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Chapter 1 introduces the research motivation, clarifies the research objectives and 

presents the thesis outline. 

Chapter 2 reviews extensively the literature related to this research, which includes the 

existing size-effect models for rocks, tensile and compressive strength failure criteria for 

transversely isotropic rocks. 

Chapter 3 systematically investigates the pure effects of model size and particle size 

distribution on mechanical properties of isotropic rock simulated by a flat-joint model. 

Comparisons with other bonded-particle models are made to illustrate the flat-joint 

model’s capability to simulate hard rock. The coefficients of variation in mechanical 

properties obtained from specimens with different model sizes and particle size 

distributions are fully discussed. 

Chapter 4 concentrates on size effect and anisotropy in the transversely isotropic rock 

under indirect tensile conditions. The effects of specimen size on elastic properties, tensile 

strength, fracture pattern and transverse strain of a transversely isotropic rock are 

systematically studied in laboratory tests. A tensile failure criterion is suggested with 

which to capture the anisotropic tensile strength. Furthermore, questions about the 

correlated relationship between size effect and anisotropy in indirect tensile strength are 

answered. 

Chapter 5 incorporates the size dependency into two failure criteria, the modified Hoek–

Brown and Saeidi criteria. A series of uniaxial and triaxial compression tests are 

conducted on a transversely isotropic slate with different sample sizes at different loading 

directions and confining pressures. The obtained uniaxial and triaxial test data are further 

used to validate the proposed size-dependent failure criteria. Additionally, the size effect 

and anisotropy on the triaxial residual strength are investigated to deduce a failure 

criterion for describing the residual strength of transversely isotropic rocks. The 

relationship among residual strength, peak strength and confining pressure is also studied. 

Chapter 6 extends the experimental results in Chapter 4 to numerically investigate the 

three-dimensional effect of anisotropy on the tensile behaviour of transversely isotropic 

rocks using a discrete element method in three dimensions. A calibration procedure for 

this three-dimensional modelling of transversely isotropic rocks is proposed. The 
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coupling effect of loading–foliation and foliation orientation on the tensile behaviour, 

including tensile strength and fracture pattern, is further studied from the microscale 

perspective. 

Chapter 7 summarises the main findings and conclusions of the thesis and presents some 

recommendations for future research. 

  



Chapter 1 

6 



Chapter 2 

7 

CHAPTER 2 LITERATURE REVIEW 

2.1 Review of existing size-effect models for rocks 

In general, the term size effect refers to the influence of sample size (i.e., diameter or 

width) on mechanical characteristics (Masoumi 2013), which is different from the shape 

effect (i.e., length-to-diameter ratio) (Rong et al. 2018). Size effect is dependent on the 

deformation processes, so that it changes with loading condition and testing approach 

(Hudson and Harrison 2000; Jaeger et al. 2009). Numerous researchers have studied 

the size effect in brittle and quasi-brittle materials such as concrete and rock under 

different stress states, including uniaxial compressive (Darbor et al. 2018; Darlington 

et al. 2011; Elkadi et al. 2006; Hawkins 1998; Hoek and Brown 1980; Masoumi et al. 

2015; Nishimatsu et al. 1969; Pierce et al. 2009; Quiñones et al. 2017; Song et al. 

2018; Thuro et al. 2001; Yoshinaka et al. 2008; Zhang et al. 2011), indirect tensile 

(Bažant 1997; Carpinteri et al. 1995; Elkadi et al. 2006; Masoumi et al. 2018; 

Masoumi et al. 2015; Masoumi et al. 2017; Rocco et al. 1999a; Rocco et al. 1999b; 

Thuro et al. 2001), point load (Broch and Franklin 1972; Hawkins 1998; Masoumi 

2013; Masoumi et al. 2018; Thuro and Plinninger 2001) and triaxial compressive 

testing (Aubertin et al. 2000; Hoek and Brown 1980; Masoumi et al. 2016; Medhurst 

and Brown 1998). Both descending models (Bažant 1984; Carpinteri et al. 1995; Hoek 

and Brown 1980) and ascending models (Bažant 1997) have been proposed to describe 

the results that are observed. Masoumi et al. (2015) further divided the descending 

models into four categories: those based on statistics, fracture energy and multifractals 

and those involving empirical and semi-empirical models. A unified size-effect law 

(USEL) including both the ascending and descending trends was proposed based on 

uniaxial compression data obtained from six sedimentary rocks. Recently, based on a 

statistical model and the strength anisotropy, a universal size-effect equation (USEE) 

describing the relationship among anisotropic angle, sample size and uniaxial 

compressive strength (UCS) was put forward by Song et al. (2018) for coal, which can 

be modelled as an orthotropic material (Amadei 1996). Because the statistical models, 

fracture energy models, fractal and multifractal models, and empirical and semi-empirical 

models have been reviewed very extensively in the literature (Masoumi 2013; Masoumi 

et al. 2015), they are not repeated here. Instead, the latest proposed USEL and USEE and 
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the size-effect models in relation to triaxial stress conditions are reviewed in the following. 

2.1.1 Unified size-effect law 

The development of the unified size-effect law was motivated by the observation that 

both ascending and descending size-effect trends are simultaneously observed in some 

sedimentary rocks. As shown in Figure 2.1, the uniaxial compressive strengths of seven 

sedimentary rocks increase initially and then decrease with the sample size reported by 

Hawkins (1998). To reproduce this unique UCS response, Masoumi et al. (2015) 

proposed the USEL by incorporating an ascending model into a descending model. 

 

Figure 2.1 Variations of uniaxial compressive strengths with sample size obtained from 

seven sedimentary rocks by Hawkins (1998). 

The two components of USEL originate from the works of Bažant (1984, 1997). Firstly, 

Bažant (1984) introduced the fracture energy theory, in which crack initiation and 

propagation require that the total potential energy within the materials and loading 

systems reduces or stays constant with increasing crack length to derive a size-effect 

model, called the size effect law (SEL). The size effect is regarded as being induced by 

the blunting of microcracking prior to the fracture, resulting in a lower stress required for 
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the failure of a larger structure. The SEL is expressed in the form 
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where N  is the nominal strength (e.g., tensile strength, uniaxial compressive strength 

and point-load strength), d denotes the specimen diameter, B  and   are dimensionless 

material constants, tf  represents the strength of a specimen with an infinitesimal size 

and 0d  represents the maximum aggregate size.  

Subsequently, Bažant (1997) put forward another size-effect model, viz. the fractal 

fracture size effect law (FFSEL), by incorporating the concept of fractals into fracture 

energy. It was illustrated that the fracture surfaces in many brittle or quasi-brittle materials, 

such as concrete, rock and ceramics, to some degree present fractal characteristics in a 

certain range of sizes. The fractal characteristics were defined by the fractal dimension, 

fd  . More specifically, 1fd =   presents the non-fractal characteristics, whereas 1fd   

presents the fractal characteristics. The form of FFSEL is given as 
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This is similar to the expression of SEL, in particular when 1fd = . The parameter 0  

has the same meaning with tf , representing the strength of a sample with an infinitesimal 

size. The other parameters are the same as those in the SEL. When 1fd  , the FFSEL 

can reproduce the ascending size-effect response of UCS data at small sample sizes. 

Combining the SEL and FFSEL models, Masoumi et al. (2015) proposed the USEL, in 

which it is always the minimum strength between that predicted by SEL and FFSEL 

throughout the size range that characterizes the nominal strength of material, as illustrated 

in Figure 2.2. The maximum nominal strength is attained at a sample size of id  , 

corresponding to the intersection between SEL and FFSEL models, according to 



Chapter 2 

10 

 

( )2/ 1

0

fd

t
i

Bf
d



−

 
=  

 
  (2.3) 

 

Figure 2.2 Schematic representation of USEL, combining SEL and FFSEL (Masoumi et 

al. 2015). 

The USEL model was verified against UCS data obtained from five sedimentary rocks 

reported by Hawkins (1998) as well as those obtained from Gosford sandstone reported 

by Masoumi et al. (2015). The USEL model was also demonstrated to be capable of 

describing the variations of UCS, crack-initiation and crack-damage stresses of an 

igneous rock, Blanco Mera granite, with varying sample size. Furthermore, the 

applicability of this model to the triaxial data was proved in Gosford sandstone by 

Masoumi et al. (2016). However, further study is needed to demonstrate the viability of 

the USEL model for rocks subject to other stress conditions, such as tensile and true 

triaxial stress states. 

2.1.2 Universal size-effect equation 

In the aforementioned size effect models, rocks are postulated to be isotropic. 

Nevertheless, natural rocks are more or less anisotropic, exhibiting different mechanical 

characteristics in different directions as a result of stresses and geological history (Abad 
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et al. 2003). However, to date there have been few size-effect studies considering the 

influence of anisotropy. Until recently, Song et al. (2018) investigated the relationship 

between size effect and anisotropy in the UCS of coal, an orthotropic material, and 

proposed a universal size-effect equation (USEE) involving the strength anisotropy and 

sample size. Firstly, three principles were suggested for defining the size-effect response 

in the UCS of coal: 

1. The relationship between sample size and UCS is determined by the mechanical 

properties of materials. 

2. The UCS decreases with increasing specimen size. 

3. For samples of a prescribed shape, the UCS remains constant for coal samples having 

sizes beyond or below the threshold values. 

Based on the three principles, a statistical size-effect model was put forward, expressed 

as 

 
0( ) kd

d M M e    −= + −   (2.4) 

where d  is the UCS of the specimen with a diameter of d ; 0  and M  characterize 

the UCS when 0d →  and d →  , respectively; and k  is a material parameter. The 

applicability of this size-effect model to coal was validated against the UCS data obtained 

from coal specimens having different shapes (cylindrical and cubic). 

Next the strength anisotropy of coal was captured by an empirical equation developed 

initially by Jaeger (1960) and improved by Donath (1961), which is used most 

commonly in uniaxial compression conditions. The empirical equation is in the form 

 
mincos2( )A D  = − −   (2.5) 

where   is the UCS at the anisotropic angle of  , min  corresponds to the angle at 

which UCS is minimum; and A  and D  are two constants. 

Lastly, the USEE model was obtained by incorporating the strength anisotropy into the 

statistical size-effect model, replacing 0   and M   in Eq. (2.4) with Eq. (2.5). The 

proposed USEE model is given as 
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 min 0 0 mincos 2( ) ( ) ( )cos 2( ) kd

c d M M M MA D A A D D e     −= − − + − − − −   (2.6) 

where 
c d  is the UCS of specimen with the diameter of d at the anisotropic angle of β; 

0A  and 0D , MA  and MD  are A and D constants for specimen size approaching zero or 

infinite, respectively; and min  is the average of   at which UCS is minimum. 

The advantage of USEE model is that material strength, sample size and anisotropic angle 

are all combined to get a mechanistic description of behaviour. Correspondingly, its 

limitation is that many tests are required to be conducted on samples with different sizes 

at different anisotropic angles for a certain material. The USEE model has been proved 

to be viable for coal, which behaves as a rock mass with preferentially oriented cleats 

under the uniaxial condition. However, further investigations are needed to explore its 

applicability to other rocks, such as transversely isotropic rock, and in other stress 

conditions. 

2.1.3 Size-effect models in relation to triaxial stress conditions 

Because the Hoek–Brown criterion (Hoek and Brown 1980) is the most well-known, 

trusted, and commonly used triaxial criterion in rock mechanics and rock engineering, it 

has been selected as a basic step in deducing size-effect models applicable in triaxial 

conditions. The generalized Hoek–Brown failure criterion for rock masses is expressed 

by 

 3
1 3 ( )a

ci

ci

m s


  


= + +   (2.7) 

where 1  and 3  are the maximum (peak strength) and minimum (confining pressure) 

principal stresses, respectively; ci   is the UCS of intact rock; and m  , s   and a   are 

material constants. For intact rocks, 1s =  and 0.5a = . 

The first notable size-effect model considering triaxial confinement was developed by 

Hoek and Brown (1980), who introduced a statistical descending size-effect model to 

the well-known Hoek–Brown failure criterion according to 
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where 50c  denotes the UCS obtained from a specimen of 50 mm diameter and d  is the 

sample diameter. Afterwards Medhurst and Brown (1998) succeeded in applying the 

Hoek–Brown size-effect model to estimate the compressive strength of coal specimens 

with diameters of 61, 101, 146 and 300 mm under confining pressures in the range of 0–

10 MPa. 

Subsequently, Masoumi et al. (2016) observed that both uniaxial and triaxial 

compressive strengths of Gosford sandstone samples with diameters of 25, 50 and 96 mm 

followed the ascending and then descending size-effect trend. They incorporated the 

USEL (Masoumi et al. 2015) into the original Hoek–Brown failure criterion according 

to 
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 (2.9) 

where the parameters are as described for Eqs. (2.1) and (2.2). The size-dependent failure 

criterion describes the relationship among compressive strength, confining pressure and 

specimen size and is verified against the experimental results for Gosford sandstone. 

Notably, the underlying assumption for the two size-dependent failure criteria described 

is that the size-effect behaviours in uniaxial and triaxial conditions are similar, supported 

by experimental results. Owing to the adoption of the Hoek–Brown failure criterion, the 

two size-dependent criteria inherit its shortcoming of limited applicability in the brittle 

regime. 

Another size-effect model taking the triaxial confinement into account was developed by 

Aubertin et al. (2000), who stated that with increasing confinement, size effects are 

reduced progressively when going from a brittle to a semi-brittle regime and fully 
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disappear in the ductile regime. The proposed size-effect model follows a generalization 

of power-law functions in a complicated form according to 
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  (2.10) 

where N   is the nominal strength of a sample with size ( d  ); S   is the maximum 

strength of a sample with the representative volume element ( Sd ); L  is the minimum 

strength of a sample in the large scale ( Ld ); 0x  and 1m  denote two material constants; 

and 0T  denotes the uniaxial tensile strength, taken as a negative value. The use of this 

size-effect model is very limited due to the complexity involved in determining its 

required parameters. 

In summary, it should be noted that none of the reviewed size-effect models in relation to 

triaxial compressive conditions take into account the strength anisotropy of rocks. 

2.2 Review of failure criteria for transversely isotropic rocks 

Anisotropy in the strength of transversely isotropic rocks has been extensively studied for 

decades using analytical, experimental and numerical approaches. Numerous failure 

criteria have been proposed to capture the anisotropic tensile strength of transversely 

isotropic rocks, such as the Hobbs–Barron, Pietruszczak–Mroz, Nova–Zaninetti and Lee–

Pietruszczak criteria. With respect to the uniaxial and triaxial compressive strength, a 

great many failure criteria have been proposed using mathematical, empirical and 

discontinuous approaches. For example, the criterion developed by Jaeger (1960) based 

on the theory of single plane of weakness (SPW) is used most commonly in uniaxial 

compression conditions. The modified Hoek–Brown criterion and Saeidi failure criterion 

(Saeidi et al. 2014) can provide good predictions for many transversely isotropic rocks 

in conventional triaxial conditions. The Anisotropic Matsuoka–Nakai (AMN)–Coulomb 

failure criterion proposed by Pei et al. (2018) is capable of describing both the strength 

and failure mode of transversely isotropic rocks under true triaxial stress conditions. 
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2.2.1 Failure criteria in tensile conditions 

The tensile strength of transversely isotropic rocks can be determined using direct or 

indirect tensile tests. In the direct tensile test, the requirement for experimentation is high 

but the tensile strength of rocks is directly equal to the applied stress. Among indirect 

tensile tests, which require less testing equipment and sample preparation, the Brazilian 

test is a very common method for measuring the tensile strength of rocks, but a formula 

is required to indirectly calculate the tensile strength. For isotropic rocks, the suggested 

formula was proposed by Akazawa (1943) and Carneiro (1943) independently; it is 

expressed as 

 
2

t

F

dt



=   (2.11) 

where F  is the force at failure and d  and t  are the diameter and thickness of the disk-

shaped specimen, respectively. Two prerequisites for this formula are that (1) the material 

be isotropic and (2) the fracture be initiated by tensile crack from the centre of the disk-

shaped specimen. However, for the transversely isotropic rock of interest in this thesis, 

the strength obtained from this formula cannot represent the true tensile strength for most 

cases. Accordingly, based on the elastic constants, Claesson and Bohloli (2002) proposed 

a reasonably accurate approximate formula for calculating the tensile strength of 

transversely isotropic rocks, 
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  (2.12) 

where E   and E   are the elastic moduli parallel to and normal to the transversely 

isotropic plane, respectively, and G   and     represent the shear modulus and the 

Poisson’s ratio in the direction perpendicular to the plane of transverse isotropy, 

respectively. It requires that the failure should start at the center of disc, but not requires 

that the failure plane must be along the loaded diameter. In this section, the tensile failure 

criteria of transversely isotropic rocks, which are applicable to both direct and indirect 

tensile strength, are reviewed as follows. 
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2.2.1.1 Hobbs-Barron criterion 

Regarding the tensile strength variation of transversely isotropic rocks with loading 

direction, Hobbs (1967) put forward the first failure criterion based on the Griffith crack 

theory. Afterwards, an anisotropic tensile strength criterion was proposed by Barron 

(1971) using the modified Griffith’s theory. In essence, the two criteria are consistent and 

can be combined as the Hobbs–Barron (H-B) criterion, 
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  (2.13) 

where ( )T   represents the tensile strength of a specimen when the angle between the 

tensile loading direction and the normal of the transversely isotropic plane is  ; mT  and 

bT  represent the tensile strength of the rock matrix and the weak plane (e.g., bedding 

plane, foliation plane and discontinuity plane), respectively.    is a material parameter, 

corresponding to a critical angle. 

2.2.1.2 Liao et al. criterion 

Liao et al. (1997) observed that the Hobbs–Barron criterion cannot provide a good 

strength description when the angle between the tensile loading direction and the normal 

of the bedding plane is high ( 90     ). Accordingly, they extended the Hobbs–

Barron criterion and proposed a second formula for describing the tensile failure stress 

according to 
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  (2.14) 

where h  and    are material parameters and the value of    is determined as in Eq. 

(2.13). Notably, the Liao et al. criterion involves three parameters. 
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2.2.1.3 Nova-Zaninetti criterion 

Subsequently, based on the direct tensile strength obtained from the Luserna gneiss, Nova 

and Zaninetti (1990) presented a continuous tensile strength criterion, called the Nova–

Zaninetti (N-Z) criterion. The form of the N-Z criterion is given as 
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  (2.15) 

Correspondingly, the inclination of failure plane (
f ) can be predicted by 
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Although the N-Z criterion is deduced from the direct tensile strength data of gneiss, its 

applicability to indirect tensile strength data has been validated by various transversely 

isotropic rocks, such as shale, sandstone, slate, gneiss, schist and marl. 

2.2.1.4 Li-Aubertin criterion 

Firstly, Li and Aubertin (2000) put forward an empirical failure criterion based on direct 

tensile strength data of anisotropic rocks and succeeded in applying it into the description 

of indirect tensile strength of gneiss and schist. As in the Liao et al. criterion, this criterion 

also has three parameters in the form 

 ( )( ) sinn

b m bT T T T = + −   (2.17) 

where n is a material parameter that can be approximately taken as /m bn T T= . 

Furthermore, the weak planes embedded in rocks are idealized as series of preferentially 

oriented elliptical cracks, and the tensile strength of transversely isotropic rocks is 

postulated to be dependent on the maximum tensile local stress along the boundary of 

elliptical cracks. Accordingly, based on Inglis’s analytical solution, Li and Aubertin 

(2002) proposed another failure criterion including two formulations to describe both 

direct and indirect tensile strength of transversely isotropic rocks, expressed by 
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where c  is a parameter controlled by the ratio of the major axis to the minor axis of the 

idealized ellipse of crack ( 1   ) and    represents the elliptical coordinate of the 

maximum tensile stress at a specified angle  . Eqs. (2.18) and (2.19) correspond to the 

failure criteria for direct and indirect tensile strength of transversely isotropic rocks, 

respectively, and they have three parameters as well. 

2.2.1.5 Lee-Pietruszczak criterions 

A tensile failure criterion was proposed by Lee and Pietruszczak (2015) employing the 

single plane of weakness (SPW) theory, so the criterion is called the SPW criterion; it is 

stated as 
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It is noted that the value of critical angle (   ) defined here is different from that in Eqs. 

(2.13) and (2.14). Meanwhile, based on the tensile strength tensor, Lee and Pietruszczak 

(2015) also presented another tensile failure criterion, named the Lee–Pietruszczak (L-P) 

criterion, which tends to oversimplify the real tensile strength features. The formulation 

of the L-P criterion is 

 ( ) cos 2
2 2

m b m bT T T T
T  

+ −
= −   (2.21) 



Chapter 2 

19 

2.2.1 Failure criteria in compressive conditions 

2.2.1.1 Modified Hoek-Brown failure criterion 

To consider the strength anisotropy of intact anisotropic rocks in triaxial conditions, 

Saroglou and Tsiambaos (2008) built on the work of Hoek and Brown (1980) by 

incorporating an anisotropic parameter k  in the form, 

 0.53
1 3 ( 1)c i

c

k m 




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
= + +   (2.22) 

where 
c  represents the UCS of rock at the anisotropic orientation with respect to the 

loading direction (β), k  is a parameter describing the anisotropy effect, and im  is a 

material constant independent of the loading direction. The parameter 
c   mainly 

controls the upward and downward movement of the criterion (Figure 2.3a), while k  

influences the curvature of the criterion (Figure 2.3b). The modified Hoek–Brown failure 

criterion has been widely used to predict the failure of various transversely isotropic rocks.  
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Figure 2.3 Schematic representation of Hoek-Brown failure criterion: (a) at different 
c  

values and identical k   of 1.0 and im   of 10; and (b) at different k   values and 

identical 
c  of 100MPa and im  of 10. 
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2.2.1.2 Saeidi failure criterion 
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Figure 2.4 Schematic representation of Saeidi failure criterion: (a) at different   values 

and identical c   of 100MPa, P of 10 and Q of 2; (b) at different c   values and 

identical   of 0.5, P of 10 and Q of 2; and (c) at different ratios of P/Q and identical 

c  of 100MPa,   of 0.5 and P of 10. 

To overcome the limitations of the Hoek–Brown failure criterion in the brittle regime, 

Rafiai (2011) proposed an empirical failure criterion for isotropic rocks which is capable 

of estimating the strength of rocks in the ductile failure regime according to 
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where P and Q are two material constants ( 0P Q   );    is a reduction factor of 

strength indicating the fracture degree of the rock mass. Subsequently, Saeidi et al. (2014) 

extended the failure criterion developed by Rafiai (2011) and put forward a criterion 

applicable for transversely isotropic rocks, called the Saeidi failure criterion, which is 

expressed as 
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  (2.24) 

where   is the reduction factor of strength associated with the rock anisotropy. In the 

failure criterion,    and 
c   control the upward and downward movement of the 

criterion (Figure 2.4a and b) and /P Q  influences the curvature of the criterion (Figure 

2.4c). 

2.2.1.3 AMN-Coulomb failure criterion 

 

Figure 2.5 Relative orientation of the material system (STN) with respect to the principal 

stress system (x1x2x3) (Pei et al. 2018). 

Pei et al. (2018) introduced a normal stress space, which incorporates the principal stress 

system in the material system, as shown in Figure 2.5, into the well-known isotropic 

Matsuoka–Nakai criterion to describe the anisotropic shear strength of transversely 

isotropic rocks. Moreover, to examine the failure surface geometry in the normal stress 
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space, the Cartesian coordinates ( , ,s t n   ) was transformed into the polar coordinates 

( , ,r Z ) as per the followings: 
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The resulting anisotropic Matsuoka–Nakai (AMN) criterion is formulated as 
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 (2.26) 

where    describes the roundness of the failure surface; st   , tn    and ns    are 

normalized shear stresses; 0r  , 120r   and 240r   are normalized 0r  , 120r   and 240r  , 

respectively; the two terms, ( )2 2

tn ns   − +  and ( )01 r − , are used to characterize the 

transversely isotropic failure. The more details can be found in the literature (Pei et al. 

2018). 

Furthermore, because natural rocks are different from frictional soils for which the 

assumption of linear pressure dependence is acceptable, the radius of the failure surface 
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in the meridian plane ( 0R ) should be a function of the polar coordinate Z, expressed by 

 ( )0 0R R Z=   (2.27) 

Consequently, Eqs. (2.26) and (2.27) together constitute the complete formulation of 

AMN failure criterion with non-linear pressure dependence. In transversely isotropic 

rocks, there are two basic types of failure modes – that occurring in the rock matrix and 

that occurring along discontinuities (e.g., cleavage, bedding and foliation planes). The 

AMN failure criterion can describe only the failure of a homogeneous transversely 

isotropic material without discontinuities. Moreover, it is known that failure along the 

discontinuities usually obeys the traditional Coulomb criterion, 

 tan 0n n c  − − =   (2.28) 

where n  and n  are the applied shear and normal stresses on the transversely isotropic 

plane and   and c  are the friction angle and cohesion along the transverse planes of 

isotropy. Accordingly, the lower bound envelope of the AMN criterion and the Coulomb 

criterion controls the failure of transversely isotropic rocks under a true triaxial condition. 

The applicability of the AMN–Coulomb failure criterion to predict the failure strength 

and failure mode of transversely isotropic rocks has also been validated against the true 

triaxial data on chlorite schist and Chichibu greenschist. 
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CHAPTER 3 EFFECTS OF MODEL SIZE AND 

PARTICLE SIZE DISTRIBUTION IN THE 

ISOTROPIC ROCK 

3.1 Introduction 

The strength and deformation characteristics of rocks are critical to various engineering 

applications such as the stability of slopes, tunnels, caverns, dam foundations and 

radioactive waste storages (Witherspoon et al. 1981). Among the numerous factors 

which control the behaviour of rock, the size effect of rocks must be considered when 

applying the laboratory strength and elasticity properties to the practical engineering 

design. 

Most researchers investigated the size effect by varying the diameter of the specimen 

while keeping the length-to-diameter ratio of 2:1 under compression tests (Hawkins 1998; 

Quiñones et al. 2017; Rong et al. 2018) or 1:2 under the Brazilian tests (Simpson et al. 

2014; Tavallali and Vervoort 2010). To date, both descending model (Bažant 1984; 

Carpinteri et al. 1995; Hoek and Brown 1980) and ascending model (Bažant 1997) 

have been proposed to describe the results that are observed. Recently, a unified size-

effect law (USEL) including both the ascending and descending trends was proposed, 

based on the uniaxial compressive strengths (UCS) obtained from six sedimentary rocks 

(Masoumi et al. 2015). Sometimes, such size-effect relation also shows good agreement 

for igneous rock, i.e., Blanco Mera granite (Quiñones et al. 2017). As for the large 

variation of the size effect, Darlington et al. (2011) gave several possible reasons: the 

differences between (a) testing method/apparatus used, (b) specimen preparation method 

and (c) type of materials (i.e., sedimentary rocks, igneous rocks and metamorphic rocks). 

In essence, the size effect is associated with the discontinuities, pre-existing flaws or pores 

within the specimen (Ju et al. 2013), the surface flaws or imperfections (Vutukuri et al. 

1974), and the rock types (Pierce et al. 2009; Yoshinaka et al. 2008) at macro scale. 

While in the microscale term, it is related to micro defects, mineral composition, mineral 

shape, mineral size distribution etc. The aforementioned two discrepancies of (a) and (b) 
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can be avoided when numerical methods are adopted. Moreover, the use of numerical 

method is also a promising tool to study the size effect of rocks, especially considering 

the convenience of investigation at microscale using numerical models and the difficulty 

in preparation and testing of large size specimens in laboratory, such as 300mm diameter 

or more which is of crucial importance to give a representative result for the study of the 

size effect (Darlington et al. 2011).  

For rock mechanics problems, the most commonly adopted numerical approaches are 

classified into three categories: continuum methods, discontinuum methods and hybrid 

continuum/dicontinuum methods (Jing 2003). Conventional continuum approaches, such 

as the Finite Element Method (FEM) or the Finite Difference Method (FDM), are mesh-

based and suffer the shortcomings of (a) complicated re-meshing and remapping of 

variables, and (b) causing drastic errors in simulating large-deformation problems (Li and 

Liu 2002). To overcome the weaknesses, many mesh-free continuum approaches have 

been developed, including the Smooth Particle Hydrodynamics (SPH) (Gingold and 

Monaghan 1977), Material Point Method (MPM) (Soga et al. 2016), Element-free 

Galerkin (EFG) (Lu et al. 1994) and so forth. Up to date, these mesh-free techniques have 

achieved success in modelling large-deformation problems in geomechanics (e.g., 

landslides, deformations in tunnels) (Manchao et al. 2015; Soga et al. 2016), but 

conventional continuum approaches still remain the mainstream numerical tool in rock 

engineering computations because of the advantage in computational efficiency (Jing 

2003). Compared with conventional continuum approaches, discontinuum approaches 

(e.g., Discrete Element Method (DEM), Discrete Fracture Network (DFN)) have the 

advantages of (a) avoiding discretization around fractures, (b) explicitly presenting 

fracture initiation and propagation processes and (c) capable of simulating large 

discontinuous deformation (Bai et al. 2016; Donzé et al. 2013; Karampinos et al. 2015; 

Zhang and Wong 2012), while have the limitations of (a) time-consuming calibration 

process of microscopic parameters and (b) huge demand for computing power for large-

scale engineering applications (Hofmann et al. 2015; Koyama and Jing 2007; 

Potyondy and Cundall 2004). Also, to make a brief comparison between mesh-free 

continuum and discontinuum approaches, taking MPM and DEM as an example, the 

DEM is more capable of explicitly presenting the cracks initiating, propagating and 
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nucleating process but sacrifices a lot of time in calibrating microscopic parameters. 

The particle flow code (PFC) (Itasca Consulting Group 2014), including PFC2D and 

PFC3D, based on DEM, have been widely used for solving various rock mechanics and 

rock engineering problems (Fan et al. 2018; Potyondy 2015). Some researchers 

(Bahrani and Kaiser 2016; Esmaieli et al. 2010; Zhang et al. 2011) have applied PFC 

in the study of size effect on rocks by introducing pre-existing joints or fractures, and the 

results can capture the typical descending trend of UCS with the sample size. However, 

in these studies, the packing effect of particle models was ignored. In other words, the 

porosity of generated models following the standard PFC procedure (Potyondy and 

Cundall 2004) cannot be controlled even if the same micro-parameters and particle size 

distribution are assigned. Generally, the porosity of model decreases with the model size 

increasing (Ding et al. 2014), which will result in a great variation in the strength and 

elastic properties (Schöpfer et al. 2009). To eliminate the packing effect, Esmaieli et al. 

(2010) assigned different micro-parameters for models of different sizes; Scholtès et al. 

(2011) fixed the initial average coordination number (i.e., average number of contacts per 

particle) by varying the interaction range of connecting discrete elements, and Ding et al. 

(2014) directly controlled the porosity using a deletion method. It is also noted that the 

model size and particle size are usually interrelated (Hofmann et al. 2015; Koyama and 

Jing 2007; Peng et al. 2017a). Either the model size is varied when grain size is fixed, 

or the grain size is varied while the model size will vary in the size effect study. Potyondy 

(2017) confirmed that the two methods could obtain similar results. In addition, contact 

constitutive model and particle size distribution, in a way corresponding to mineral 

composition and mineral size distribution respectively, also play vital roles in the size 

effect in the PFC models (Koyama and Jing 2007). The effects of model size and particle 

size distribution on parallel-bonded models have been investigated under uniaxial 

compression tests by PFC2D (Koyama and Jing 2007) and PFC3D (Ding et al. 2014). 

Peng et al. (2017a; 2017b) and (Zhou et al. 2017) explored the two effects on grain-

based models using PFC2D. Nevertheless, even nowadays, there is not yet a systematic 

study on the flat-jointed models. 

In this chapter, the roles of model size and particle size distribution on flat-jointed models 
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are systematically investigated under uniaxial compression and Brazilian tests using 

PFC3D. An insight into these effects assists to establish a commonly accepted standard 

for the selection of model size and particle size for the flat-jointed PFC3D models. It is 

also a basic step for the further size-effect study of rocks, since there is still no single 

numerical approach capable of capturing the USEL response observed in laboratory 

(Masoumi et al. 2015; Quiñones et al. 2017). 

3.2 Research methodology 

The Lac du Bonnet (LdB) granite, which has been extensively investigated either in 

laboratory (Kelly et al. 1994; Martin 1993) or in numerical simulation (Ding et al. 2014; 

Lan et al. 2010; Liu et al. 2018; Potyondy and Cundall 2004; Scholtès and Donzé 

2013), is cited as the reference in this numerical study. Firstly, the mechanical properties 

of LdB granite are summarised. Then the adopted constitutive model, flat-joint model 

(FJM), is introduced exhaustively from the fundamental principles, microscopic 

parameters and the inherent advantages in application. The generation methods for the 

standard and same-porosity PFC3D models are further presented to prepare for the 

following calibration and parametric study. To accurately reproduce the mechanical 

behaviours of LdB granite, the micro-parameters of FJM are calibrated from as many 

macro-properties as possible. These macro-properties cover a range of UCS, Young’s 

modulus, Poisson’s ratio, compressive strengths and crack-initiation stresses under 

various confining stresses, and Brazilian tensile strength (BTS). Lastly, the influences of 

the model size and particle size distribution are investigated under uniaxial compression 

and Brazilian tests. 

3.2.1 Mechanical characteristics of LdB granite 

A great number of laboratory tests have been carried out on the LdB granite, which is 

mainly composed of K-feldspar, plagioclase, quartz and biotite. The grain structures and 

size distributions of the four mineral compositions are shown in Figure 3.1. From the 

viewpoint of two-dimensional thin section image, the grain structures can be represented 

by means of polygon. The minimum grain size is in the range of 0.2-0.5mm, while the 

maximum grain size ranges from 2 to 6mm. The mean grain size, which is often used as 
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an analogue of particle size in numerical models, covers a range of 0.7-4.3mm and follows 

a power function. Thus the average grain diameter (d) of 2.5mm is chosen for controlling 

the particle size distribution in this study. Moreover, the short-term laboratory properties 

(Martin 1993) of LdB near surface (0-200m) granite obtained from specimens of 63-mm 

diameter and length-to-diameter ratio of 2.5 are listed in the second column of Table 3.1. 

The Young’s modulus was obtained by the tangent at the 50% peak strength under 

uniaxial compression test. The crack-initiation stress, which indicates the onset of 

cracking, is determined to be approximately one-third of UCS by the volumetric strain 

method (Martin and Chandler 1994; Martin 1997) for the LdB granite. It is found to 

be dependent on the confining stress in the form of 
3

1
1.5

3
uq + , where uq  and 3  are 

UCS and confining stress respectively (Martin 1997). 

 

Figure 3.1 Mineral grain structures and grain size distributions of a sample of LdB granite 

from Underground Research Laboratory (URL). (a) Polarized and fluorescent 

microscopic image (Lan et al. 2010). (b) Grain size distribution (Kelly et al. 1994). The 

solid black and blue lines envelop the distributions of minimum and maximum grain sizes, 

respectively. The dashed red line represents the mean grain size distribution. 
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Figure 3.2 3D flat-joint model. (a) Installation of flat-joint contacts. (b) Mechanical 

behaviour of flat-joint model (Potyondy 2016). (c) Interface discretization of flat-joint 

model. 

Table 3.1 Macro-properties of LdB granite, calibrated PBM and FJM specimens. 

Property 
LdB granite from 

(Martin 1993) 

PBM results from 

(Potyondy and 

Cundall 2004) 

FJM results (This 

study) 

Young’s modulus, E 

(GPa) 
69±5.8 (n = 81) 69.2±0.8 (n = 10) 68.6±0.3 (n = 10) 

Poisson’s ratio,   0.26±0.04 (n = 81) 0.256±0.014 (n = 10) 0.254±0.004 (n = 10) 

UCS, uq (MPa) 200±22 (n = 81) 198.8±7.2 (n = 10) 201.2±1.3 (n = 10) 

BTS, t (MPa) 9.3±1.3 (n = 39) 27.8±3.8 (n = 10) 9.5±0.3 (n = 10) 

Crack-initiation stress, 

ci (MPa) 
3

1
1.5

3
uq +  30.35 1.9uq +  30.32 2.8uq +  

HB parameter c (MPa) 210 199.1 210.7 

HB parameter mi 28.9 3.3 28.2 

Specimen size (mm) 157.5×63 63.4×31.7×31.7 125×62.5 

D(W)/d ratio 25 21 25 

Note that, the first four macro-properties are expressed in the form of mean ± standard 

deviation (number of samples). In laboratory, n is the total number of samples undergone 

tests, while in simulations, n represents the number of realizations with different particle 



Chapter 3 

31 

 

packing arrangements. 

3.2.2 Flat-joint constitutive model 

Prior to FJM, bonded-particle models (BPMs), including the contact-bond model (CBM) 

and parallel-bond model (PBM), have been widely employed to study the mechanical 

behaviours of adhesiveless materials (i.e., soil) (Cundall and Strack 1979) and adhesive 

materials (i.e., rock) (Potyondy and Cundall 2004). However, when either the CBM or 

PBM is used to simulate the hard rock, there exist three intrinsic problems (Wu and Xu 

2016): (a) low ratio of uniaxial compression strength to tensile strength, (b) low friction 

angle and (c) linear failure envelop. To overcome these problems, Potyondy (2012) first 

developed the FJM in 2012 and sanctioned the model for rock by using a typical hard 

rock (Äspö diorite). After that, FJM has successfully simulated various rocks, such as 

granite (Castro-Filgueira et al. 2017; Vallejos et al. 2016), marble (Cheng et al. 2015; 

Wu and Xu 2016), tuff (Xu et al. 2016), limestone (Chen 2017), sandstone (Imani et al. 

2017; Potyondy 2017) and phyllite (Xu et al. 2017). 

Flat-joint contacts are installed between grains with a gap equal to or less than the 

installation gap (Figure 3.2a). That varies among different interaction grains, defined as 

the installation gap ratio ( ratiog  ) multiplying the smaller radius of the two connecting 

grains. It is noted that min max0 /ratiog R R   to prevent grains from being embedded in 

adjoining pairs (Scholtès and Donzé 2013). The FJM describes the bond as a discretized 

interface between two notional surfaces (Figure 3.2b), each of which is attached to a rigid 

grain. The interface is divided into rN N  elements ( rN  and N  are the number of 

elements in radial and circumferential directions respectively), every of which is either 

bonded or unbonded (Figure 3.2c). The strength envelops of bonded and unbonded 

elements are illustrated in Figure 3.3. For a bonded element, it breaks either in tensile or 

shear mode when the exerted stress exceeds the corresponding tensile-strength ( b ) or 

shear strength ( ( ) ( )- tan( )e e

b bc  = ). Once the element is unbonded, it follows a slip 

envelop that only the shear stress ( ( ) ( )-e e = ) can be sustained. 
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Each element bearing a force ( ( )e
F ) and moment ( ( )e

M ) at the element centroid (Figure 

3.2b) obeys the force-displacement law (Potyondy 2016) to update the force, moment 

and bond state. Combined the contributions of all elements, the interface presents an 

emergent behaviour that evolves from the linear elastic and fully bonded state to a 

partially damaged state to the finally frictional state, when gapped contact and slit contact 

are not introduced in the model. The collective behavior of interacting mechanism in 

elements of bonded and unbonded states is similar to that in the disturbed state concept 

(DSC) model (Desai 1976; Desai 2016). Both gapped ( 0G   ) and slit contacts 

(1- - 0G B    ) belong to the unbonded contact, which presents a frictional behaviour 

when notional surfaces being in contact. The element force can be regarded as the 

resultant of normal and shear forces, while the element moment is the resultant of twisting 

and bending moments, expressed by 

 

( ) ( ) ( )

( ) ( ) ( )

ˆ=-

ˆ=

e e e

n

e e e

t

F

M

 +


+

c s

c b

F n F

M n M
  (3.1) 

where ( ) 0e

nF   represents compression and ( )e

tM  is assumed to be equal to zero for 

simplification. For FJM in three-dimension (FJM3D), this simplification is based on the 

assumption that the shear stress induced by relative twist rotation keeps constant in the 

whole element so that the induced twisting moment at the element centroid is zero. In fact, 

the shear stress changes linearly along the radial direction over the element and the 

equivalent twisting moment is not equal to zero. Furthermore, the normal stress arising 

from the relative deflection also varies along the radial direction in the element. Thus a 

similar inaccuracy also exists for the bending moment. However, these errors tend to 

vanish with the refinement of discretization. As a result, the number of elements of a 

contact has influence on the behaviour of FJM and even the mechanical behaviour of 

synthetic flat-jointed material (Wang et al. 2017a). 
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Figure 3.3 Failure and slip envelops of elements of FJM.  

Table 3.2 The requirements of dimension and number of specimens in the current versions 

of ASTM and ISRM. 

Type of test ASTM ISRM 

Uniaxial compressive test max

*

/ 2.0 2.5

47

/ 10

5

L D

D mm

D d

n

=






 

  (ASTM 

2014) 

max

/ 2.0 3.0

50

/ 20

5

L D

D mm

D d

n

=






 

 

(Fairhurst and Hudson 1999) 

Brazilian test max

/ 0.2 0.75

54

/ 10

10

L D

D mm

D d

n

=






 

 

(ASTM 2016) 

/ 0.5

54

10

L D

D mm

n

=



 

 (ISRM 1978)  

*ASTM does not give this number directly but suggests 5 is usually adopted. Parameters 

of L  , D  , maxd   and n   refer to the length, diameter of specimen, maximum grain 

diameter and required number of specimens, respectively. 
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3.2.3 Flat-jointed model of LdB granite 

3.2.3.1 Calibration procedure 

The calibration of microscopic parameters from macro-properties obtained in laboratory 

or in situ is regarded as a key process for PFC simulations. For simplicity and direct 

comparison, the uniform particle size distribution similar to other researchers (Ding et al. 

2014; Potyondy and Cundall 2004) was adopted. For each group of micro-parameters, 

ten cylindrical FJM3D models of 62.5mm-diameter with different particle packing 

configurations by varying the seed of random-number generator are created, and the 

diameter of which is 25 times the average grain diameter and 20 times the maximum grain 

diameter. For uniaxial, confined compression and Brazilian test simulations, the length-

diameter-ratios of the specimens were 2.0 and 0.5 respectively, following the suggestions 

(listed in Table 3.2) of the American Society for Testing and Materials (ASTM) (2014; 

2016) and the International Society for Rock Mechanics (ISRM) (Fairhurst and Hudson 

1999; ISRM 1978). The number of ten realizations is also based on the requirements of 

ASTM and ISRM, and is used in the subsequent parametric study. 

When uniaxial and confined compression test simulations are performed, the loading 

velocity, exerted by moving the upper and bottom platens towards each other, was always 

controlled at 0.125 m/s, which is in the range of 0.016-0.2 m/s adopted by many 

researchers (Cho et al. 2007; Ding et al. 2014; Potyondy and Cundall 2004). They have 

confirmed that this velocity range is slow enough to ensure the specimen in a quasi-static 

state throughout the test. For the Brazilian test simulations, the loading velocity of 0.0075 

m/s is chosen for all the specimens, and the loading platen width is kept at one average 

grain diameter (2.5 mm), as suggested by Xu et al. (2016). 

Based on previous parametric studies (Castro-Filgueira et al. 2017; Wu and Xu 2016) 

on FJM micro-parameters, it is found that local tensile-strength ( b ) is proportional to 

the macroscopic tensile strength, and local friction angle (
b ) depends linearly on the 

macroscopic friction angle or Hoek-Brown (HB) strength parameter mi. Referring to the 

calibration procedures defined by Itasca (2014) and Wu and Xu (2016), a different 

calibration process was employed as summarised in the flowchart (Figure 3.4a) and 
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described in the following steps: 

Step 1: Choice of installation gap ratio ( ratiog ) and number of elements ( rN N ) aiming 

to achieve a reasonable coordination number (CN) and calculation efficiency. As a first 

approximation, the bond cohesion, bc , and tensile-strength, b , were taken to be equal 

to the laboratory properties of UCS and BTS respectively. Meanwhile, other unknown 

parameters were set to arbitrary values. 

Step 2: Calibration on tensile strength: Brazilian test simulations were run on specimens 

with parameters obtained from step one, by adjusting b  to match the BTS. 

Step 3: Calibration on UCS, Young’s modulus, Poisson’s ratio and post-peak response: 

uniaxial compression test simulations were carried out. The UCS of the model is 

correlated to b  and bc . The Young’s modulus and Poisson’s ratio of model were found 

to be correlated to the bond and particle moduli (
cE  and cE ), and the ratios of bond and 

particle normal to shear stiffness ( /n sk k  and /n sk k ), respectively. The residual strength 

of the model was also found to be interrelated to the bond and particle friction coefficients 

(   and 
p ). These macro-properties were matched by iteratively adjusting the micro-

parameters, except for the bond tensile-strength which had been calibrated in step 2.  

Step 4: Calibration on the confined strength and macroscopic friction angle or HB 

strength parameter mi: confined compression test simulations were performed on FJM 

models with previously calibrated micro-parameters. The two macroscopic behaviours 

were matched by adjusting the FJ bond friction angle (
b ). If after 5 loops the calibration 

results were still not converging to the target values, the calibration needed to be redone 

from Step 1. 
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Start

1. Gap ratio (gratio)

2. Number of elements (Nr, Na)

3. FJ tensile strength (σb)

Perform Brazilian test and check 

with BTS

Is the model calibrated?
No

4. FJ cohesion strength (cb)

5. FJ & ball modulus (Ec, Ec, kn/ks, kn/ks)

6. FJ & ball friction coefficients (μ, μp)

Perform uniaxial compression test and 

check with UCS, Young’s modulus, 

Poisson’s ratio, residual strength

Is the model calibrated?

7. FJ friction angle (Φb)

Perform confined compression test and check 

with confined compression strength, HB 

parameter mi or macroscopic friction angle

Is the model calibrated?

End

Yes

Yes

No

Yes

After 5 loops: are 

calibration results 

converging?

No

Yes

No

 

 

(a) 
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Start

1. Gap ratio (gratio)

2. FJ ratio of cb/σb

UCS/σt

3. Ball residual 

friction angle (Φr)
Post-peak behavior

4. FJ friction angle 

(Φb)
Internal friction angle

5. FJ & ball modulus 

(Ec, Ec, kn/ks, kn/ks)
Young’s modulus, Poisson’s ratio

6. FJ tensile strength 

(σb)
σt

7. FJ cohesion strength 

(cb)
UCS

End

 

Figure 3.4 Flowcharts of calibration process for flat-jointed models (FJ represents the 

flat-joint bond): (a) proposed in this study; (b) defined by Wu and Xu (2016). 

Since the calibration procedure defined by Itasca (2014) only considers three macro-

properties (UCS, Young’s modulus and Poisson’s ratio), it cannot accurately reproduce 

the mechanical behaviours of rocks. In addition, compared with the calibration 

methodology provided by Wu and Xu (2016), as shown in Figure 3.4, the proposed 

calibration process makes improvements in: (1) increasing the calibration efficiency by 

taking advantage of the correspondences between the bond tensile-strength and the 

macroscopic tensile strength, and between the bond friction angle and the macroscopic 

friction angle or Hoek-Brown (HB) strength parameter mi, (2) reducing the number of 

simulations by grouping together the microscopic parameters which can be calibrated in 

the same test, (3) enhancing the feasibility of calibration method by performing 

(b) 
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simulations in a more logic order. 

 

Figure 3.5 Calculation time for FJM models with different numbers of elements and PBM 

models measured by conducting UCT and BT simulations on the 62.5mm-diameter 

specimens. The total number of elements of a contact is identical, enclosed by the blue 

dashed line. 

 

Figure 3.6 Comparisons between the Young’s modulus of FJM numerical simulation and 

laboratory test results. The error bar of FJM results is equal to one standard deviation. 
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It should be noted that the determination of the installation gap ratio considers two factors: 

CN and min max/R R . The ratiog of 0.15 results in an average CN of the model equal to 7.8, 

among the range of 6-10 found in the dense states of homogeneous, two-mixed and multi-

mixed assemblies (Oda 1977). In this work, the minimum ratio of minR  to maxR  is 1:6, 

thus ratiog of 0.15 was adopted lastly. In order to determine the number of elements, the 

calculation time for FJM models with different rN  (1, 2, 3, 4) and N  (3, 4, 5, 6) was 

measured through conducting uniaxial compression test (UCT) and Brazilian test (BT) 

simulations one by one on a desktop computer with 3.5GHz quad-core i7-4770K CPU. 

As a reference, the calculation time for PBM models with the same model size, particle 

size distribution and UCS was also measured under the two kinds of simulations. All the 

calculation time was recorded from the initial start to the peak strength, the mean value 

of which based on 10 realizations is shown in Figure 3.5. The results show that the 

calculation efficiencies for both UCT and BT increase first and then decrease with 

increasing number of elements, reaching the best when rN N  equals to 1 4 . Hence, 

this combination was adopted in our work. It is also found that the calculation efficiency 

nearly keeps unchanged if the total number of elements of a contact is identical. 

Compared with the PBM, the FJM requires longer calculation time for simulating the 

specimens with the same strength (e.g., UCS), which is consistent with the finding of 

Vallejos et al. (2016). It is worth noting that the more calculation time of BT needed for 

PBM models results from the higher BTS (nearly twice) than that for FJM models. 

Moreover, since the intact rock is the research object, unbonded contacts (gapped and slit 

contacts) are not introduced by setting the bonded element fraction ( B ) equal to 1.0. 

3.2.3.2 Model genesis 

There are two categories of sample preparation methods for DEM simulations: dynamic 

and constructive (Bagi 2005; Schöpfer et al. 2009). The dynamic approach has been used 

extensively, which is the default method in PFC. The procedure of standard PFC model-

genesis method is Potyondy and Cundall (2004): (1) Particles of radii in a specified 

range are generated randomly within a vessel with frictionless walls. (2) System is 

adjusted by rearranging the particles until the equilibrium state under zero friction. (3) A 
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low isotropic stress within the particle assembly is achieved by reducing the radii of all 

particles iteratively and simultaneously. (4) The number of contacts of each particle 

reaches at least three by only modifying the positions and radii of particles with less than 

three contacts. (5) Contact bonds are installed between particles in near proximity which 

is defined by users. Although at beginning, the vessel porosity (default value is 35% in 

PFC3D) is fixed, the porosity of the populated model is still varying even if the same 

model size and particle size distribution are assigned. To eliminate this packing effect, the 

particle deletion method, one constructive method, is utilised in this study. Based on the 

specimens generated by the standard PFC procedure, the particle deletion method follows 

the process: (1) A random position within the vessel is chosen and the corresponding 

nearest particle is selected. (2) The selected particle and all its neighbors are checked 

whether they have been selected. If yes, go back to step one; if no, continue. (3) The 

volume of all selected particles is deducted to update the model porosity. If it does not 

attain the required porosity, go back; if it does, continue. (4) All selected particles are 

deleted and the new model is saved. As the deleted particles are selected randomly, the 

original particle size distribution is marginally affected (Ding et al. 2014). 

In this study, the specimens are generated by these two methods which are called the 

standard and the same-porosity FJM3D models, respectively. 

3.2.3.3 Calibration results 

Table 3.3 summarises the micro-parameters of FJM for simulating the LdB granite 

obtained through the calibration process. The coefficient of variation (CV), defined as the 

ratio between the standard deviation and the mean, for the FJ bond tensile-strength and 

cohesion is set to 0.23 to compare directly with the published numerical simulation results 

obtained using PBM (Ding et al. 2014; Potyondy and Cundall 2004). Interestingly, 

owing to the special micro-structure of FJM, the post-peak response of the model was 

calibrated by assigning a relative low value (0.1) to the friction coefficients (   and 
p ). 
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Table 3.3 Calibrated micro-parameters of the FJM for simulating LdB granite. 

Micro-parameter Definition Value 

v  Bulk density (kg/m3) 2640 

mind  Minimum particle diameter (mm) 1.88 

max min/d d  Ratio of maximum to minimum particle diameter 1.66 

ratiog  Installation gap ratio 0.15 

rN  Number of elements in radial direction 1 

N  Number of elements in circumferential direction 4 

B  Bonded element fraction 1.0 

G  Gapped element fraction 0 

cE  Effective modulus of bond (GPa) 100 

/n sk k  Ratio of bond normal to shear stiffness 2.7 

b  Mean bond tensile-strength   SD (MPa) 22  5 

bc  Mean bond cohesion strength   SD (MPa) 215  49 

b  Friction angle of bond (degrees) 55 

  Friction coefficient of bond 0.1 

cE  Effective modulus of particle contact (GPa) 100 

/n sk k  Ratio of particle normal to shear stiffness 2.7 

p  Friction coefficient of particle 0.1 

All the calibrated macro-properties are listed in the fourth column of Table 3.1, relative 

errors of which except the crack-initiation stress fall within 3%. The Young’s modulus of 

FJM specimens varies scarcely with the confining stress increasing, in line with the 

experimental results (Figure 3.6). Moreover, comparisons of the results with the 

laboratory tests, FJM and PBM numerical simulations were made as shown in Figure 3.7 

and Table 3.1. Contrary to the low UCS/BTS (equal to 7.2) of PBM specimens, the 

UCS/BTS of the calibrated FJM specimens is very high (21.2), capturing the brittleness 

of the hard rock (21.5 in laboratory). In addition, unlike a linear failure envelop for PBM 
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specimens, the failure envelops for both FJM and experimental specimens are nonlinear. 

Furthermore, the HB failure criterion was used to fit the peak confined strengths of FJM 

and PBM specimens, compared with the failure envelope obtained by Martin (1993). 

The HB failure criterion for intact rocks is given by 

 0.53
1 3 ( 1)c i

c

m


  


= + +   (3.2) 

where c   and im   are two parameters determined by statistical analysis (Hoek and 

Brown 1997). It is found that the HB parameters mi for FJM and experimental specimens 

are far larger than that for the PBM specimen. At this point, the FJM successfully solves 

the three intrinsic shortcomings of classical DEM as aforementioned. It is also noted that 

the curve-fitted HB failure envelops for FJM and experimental results underestimate the 

peak strength in the tension zone (Figure 3.7), which is in agreement with the conclusion 

of Cai (2010) that mi in high confinement is about 1.5 times that in tension zone for brittle 

rocks (e.g., crystalline rocks). 

The crack-initiation stress (CIS) is one characteristic material parameter (Martin and 

Chandler 1994), often used as an estimated onset point of spalling around underground 

excavations (Li et al. 2019; Nicksiar and Martin 2014). The variation of crack-initiation 

stress (the axial stress corresponding to about 5% of the number of cracks at the peak 

stress) with confining stress is presented in Figure 3.7, and it is well fitted by the linear 

relationship: 

 30.32 2.8ci uq = +   (3.3) 

Although Eq. (3.3) differs slightly from the experimental result made by Martin (1997) 

( 3

1
1.5

3
ci uq = + ), it however agrees with the experimental observations from various 

brittle rocks (Brace et al. 1966; Pestman and Van Munster 1996) with regard to damage 

initiation. Also, Eq. (3.3) is very similar to the numerical results obtained by Potyondy 

and Cundall ( 30.35 1.9ci uq = + ) using PBM (Potyondy and Cundall 2004), and by 

Scholtès and Donzé ( 30.3 2.6ci uq = +  ) using a novel DEM model (Scholtès and 
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Donzé 2013). 

  

Figure 3.7 Comparisons among unconfined, confined peak and crack-initiation strengths 

and Brazilian tensile strengths obtained from FJM and PBM (Potyondy and Cundall 

2004) numerical simulation and laboratory (Martin 1993) tests. The fitted HB failure 

envelop curves and crack-initiation stress lines are plotted. 

In summary, the calibrated FJM specimen as developed well captures the mechanical 

behaviours of LdB granite. However, there are still some limitations existing in the FJM: 

(1) it requires longer simulation time than the PBM; and (2) the predicted CIS is 

overestimated with increasing confining stress. The calculation time required is 

associated with the number of constitutive contacts in the synthetic models. When the 

model size, particle size distribution and installation gap are the same, the number of 

contacts in the FJM models is rN N  times of that in the PBM models. 

3.2.4 Parametric study 

Based on the calibrated micro-parameters, the cylindrical FJM3D models with different 

model sizes and particle size distributions were created to investigate their influences on 

macro-mechanical properties by conducting uniaxial compression and Brazilian tests. 

The schematic view of generation procedure of the models is shown in Figure 3.8. Seven 
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model sizes and four particle size distributions were adopted, and for each case ten 

realizations were generated. It is worth noting that the length-diameter-ratios of these 

models for uniaxial compression and Brazilian tests are 2.0 and 0.5 respectively. 

Therefore, there are totally 280 models used for either UCT or BT. The loading fashions 

and loading velocities for the two tests have been given in detail in section 3.2.3.2. 

 

Figure 3.8 The schematic view of generation procedure of FJM3D models used in this 

study. The particles were randomly generated in (a) a cylinder domain of length-diameter-

ratio of 2.0 or 0.5 with diameter varying from 25 to 125 mm; (b) four different particle 

size distributions; (c) 10 realizations for each model by varying the seed of random-

number generator, and a total of 280 models were created. 
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Table 3.4 shows the specific parameters of model size and particle size distribution used 

for the analysis. The four particle size distributions, following the uniform distribution, 

are labelled as Case I, II, III and IV, corresponding to max min/d d  of 1, 1.66, 3 and 6 

respectively. To ensure the average particle diameter of the assembly roughly identical 

( 2.5mm), the minimum particle diameters ( mind ) for Case I, II, III and IV are 2.5, 1.88, 

1.25 and 0.72 mm respectively. Meanwhile, the model diameters ( D ) cover a range of 

25, 37.5, 50, 62.5, 75, 87.5, 125 mm, corresponding to /D d  of 10, 15, 20, 25, 30, 35 

and 50 respectively.  

Table 3.4 Properties for model size and particle size distribution. 

Property and description Case I Case II Case III Case IV 

Particle size ratio: max min/d d   1 1.66 3 6 

Average particle diameter: d  (mm) 2.5 2.5 2.5 2.5 

Minimum particle diameter: mind  (mm) 2.5 1.88 1.25 0.72 

Particle size distribution type Uniform 

Model diameter: D  (mm) 25 37.5 50 62.5 75 87.5 125 

3.3 Simulation Results 

3.3.1 The standard FJM3D model 

In this section, the simulation results obtained from the standard FJM3D models under 

UCT and BT are given. 

3.3.1.1 Effect of model size                                                          

Figure 3.9 shows the simulation results of UCS, Young’s modulus, Poisson’s ratio and 

BTS for Case II from 10 realizations. The calculated values scatter widely when the mode 

size is small (e.g. D/d = 10), and then concentrates with increasing model size (D/d). 

Although the particle size distributions are different, the effects of the model size on the 

simulation results of Cases I-IV are similar. Figures similar to Figure 3.9 can also be 

plotted for Cases I, III and IV, but are not given for avoiding repetitions.  
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                     (a)                                         (b)  

 

                     (c)                                         (d)  

Figure 3.9 Results of the simulated macro-mechanical properties for Case II obtained 

from 10 realizations. (a) UCS, (b) Young’s modulus, (c) Poisson’s ratio and (d) BTS. 

Table 3.5 Model size (D/dmax) determination on the basis of coefficient of variation. 

Acceptable variation (%) Case I Case II Case III Case IV 

10 15  12  10  9  

5 20  16  17  15  

3 30  24  20  18  

The mean values and coefficients of variation (CV) of these four macro-properties are 

presented in Figures 3.10 and 3.11 to analyze the variation trends and levels with the 

model size. Unless otherwise stated, the data in the following figures represented the 
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mean values. As the sample size increases, UCS and Young’s modulus grow rapidly first 

and then gradually, increasing by around 40% and 13% respectively. Poisson’s ratio only 

increases in small size models (from D/d = 10 to D/d = 15) and then fluctuates at a certain 

value. Contrary to UCS and Young’s modulus, BTS reduces by approximately 20% with 

a decreasing rate when the model size increases.  

 

                     (a)                                         (b)  

 

                     (c)                                         (d)  

Figure 3.10 Effect of the model size on (a) UCS, (b) Young’s modulus, (c) Poisson’s ratio 

and (d) BTS for the standard FJM3D model. 

Referring to Figure 3.11, CVs of the macro-properties are functions of the model size 

with four different particle size distributions, decreasing with increasing model size. The 

CV of BTS is the largest because the minimum dimension of the specimen for BT 
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simulations is the length (thickness), rather than the diameter as that for the UCT 

simulations. For rock engineering applications, a zero CV cannot be achieved, instead a 

small acceptable variation should be chosen to limit the uncertainties of the results. Table 

3.5 shows the model sizes determined by three acceptable variations of 10%, 5% and 3% 

for the four cases. A 5% acceptable variation is usually adequate in practice, and that 

corresponds to /D d  of 20, 20, 25 and 25 and max/D d  of 20, 16, 16.7 and 14.6 for 

Cases I-IV respectively. 

 

Figure 3.11 Effect of the model size on the coefficients of variation of UCS, Young’s 

modulus, Poisson’s ratio and BTS for the standard FJM3D model. 

 

Figure 3.12 Effect of the model size on (a) CIS and (b) UCS/BTS ratio for the standard 

FJM3D model. 

(a) (b) 
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Figure 3.13 Effect of the model size on the porosity of the standard FJM3D models. 

The mean values of CIS and UCS/BTS ratio are also functions of the model size shown 

in Figure 3.12. The CIS keeps increasing, by average 21.5% for the four cases, as the 

model size increases. Since the variation trend of UCS is opposite to that of BTS, the 

increase of UCS/BTS ratio is far greater than the rate of change of any of them, and is 

exceeding 60%. However, the variations of all these macro-properties are attributed to 

not only the model size change, but also the porosity variation with model size as 

illustrated in Figure 3.13. It is noted that the model porosity is usually larger than that of 

the real rocks, which are typically comprised of non-spherical grains packed more tightly 

than spheres (Schöpfer et al. 2009). Besides, the contact bond analogous to cement in 

real rocks is not considered in the porosity calculation. 

3.3.1.2 Effect of particle size distribution 

Figure 3.14 presents the effect of particle size distribution (PSD) on UCS, Young’s 

modulus, Poisson’s ratio and BTS. All of them decrease first, reaching the lowest point 

at max min/d d  equal to 3, and then increase slightly with the particle size heterogeneity 

( max min/d d ). The results are some different from the others’ research (Liu et al. 2018; 

Peng et al. 2017b) that strengths of specimens keep decreasing as the particle size 

heterogeneity increases. It is because the difference in the porosity of specimens plays a 
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role in the particle size effect, as indicated in Figure 3.13. 

 

 

Figure 3.14 Effect of PSD on (a) UCS, (b) Young’s modulus, (c) Poisson’s ratio and (d) 

BTS for the standard FJM3D model. 

3.3.2 The same-porosity FJM3D model 

As pointed out in Section 3.3.1, the model porosity plays a pivotal influence on the effects 

of the model size and particle size distribution. To capture their true effects on simulation 

results, the porosity of all specimens with different model sizes and PSDs is controlled at 

a same value using the described deletion method. In our study, the model porosity for 

Case II at D/d=15 is chosen to be the target porosity (39.08%), as shown in Figure 3.13. 

In the section, the simulation results for the same-porosity FJM3D models under UCT 

and BT are presented, and meanwhile compared with results for the standard FJM3D 

models. 

(a) (b) 

(c) (d) 
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                     (a)                                         (b)  

Figure 3.15 Comparisons of (a) UCS and (b) BTS for Case III between based on the 

standard and same-porosity FJM3D models. The percentages in the figure are calculated 

based on the reference line, and signs “+” and “-” represent increase and decrease 

respectively. 

3.3.2.1 Net effect of model size 

For each model size and PSD, the simulated values of the macro-properties, including 

UCS, Young’s modulus, Poisson’s ratio and BTS, are obtained from 10 realizations. The 

results (considering the limited space, are not presented here) imply the scatter and CV 

of simulated macro-properties follow the same patterns with those for the standard 

FJM3D models as shown in Figures 3.9 and 3.11. 

Taking an example, UCS and BTS for Case III obtained from standard and same-porosity 

FJM3D models are compared in Figure 3.15. The calculated values of UCS for standard 

and same-porosity FJM3D models present two opposing variation trends. Compared to 

the reference line, the UCS of standard models increases by 33.9% while that of the same-

porosity models decreases by around 10% with increasing model size. Although the 

calculated values of BTS for the two models show the same trend, the change rates of 

them are very different. These discrepancies arise from the difference of porosity between 

the two models, as demonstrated by the net effect of porosity in Figure 3.15. The net effect 

of the model size is also illustrated in Figure 3.15, which is regarded as the difference 

between the reference line and the line connecting results based on the same-porosity 
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models.  

Thus, for one same particle size distribution, the variation of the macro-properties for 

standard models is the combined action of porosity (n) and model size ( /D d ). Because 

the net effect of the model size is negative, the relationship between porosity and UCS 

(BTS) is obtained through combining the corresponding magnitude of net effect of model 

size on UCS (BTS) of the standard FJM3D models, as shown in Figure 3.16. As the model 

porosity increases, both UCS and BTS decrease nearly linearly. It is in good agreement 

with the trends of simulation results using parallel-bond models in three-dimension 

(PBM3D) provided by Schöpfer et al. (2009) and Ding et al. (2014). 

 

Figure 3.16 Plots of (a) UCS and (b) BTS vs. porosity. The simulation results using 

PBM3D by Schöpfer et al. (2009) and Ding et al. (2014) are also plotted to compare. 

The variations of the calculated values of macroscopic properties (UCS, Young’s modulus, 

Poisson’s ratio and BTS) with model size are given in Figure 3.17. The UCS, Young’s 

modulus, and Poisson’s ratio slightly decrease until the model size increases to 50mm 

(D/d = 20), afterwards they keep nearly unchanged. Meanwhile, BTS reduces as the 

model size increases. Moreover, Figure 3.18 shows the size effect on CIS and UCS/BTS 

ratio. It is found that CIS only decreases slightly in small size specimens ( 50D mm ) 

and then remains nearly constant with increasing model size. But the model size has an 

evident positive effect on the UCS/BTS ratio, which is mainly attributed to the sharp 

reduction of BTS. 

(a) (b) 
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Figure 3.17 Effect of the model size on (a) UCS, (b) Young’s modulus, (c) Poisson’s ratio 

and (d) BTS obtained from the same-porosity FJM3D model simulations. 

 

Figure 3.18 Effect of the model size on: (a) CIS, (b) UCS/BTS ratio for the same-porosity 

FJM3D model. 

(a) (b) 

(c) (d) 

(a) (b) 
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Figure 3.19 Effect of the sample size on UCS and CIS from URL for LdB granite (the red 

dashed lines enclose the data range in this paper, 25-125mm) (Martin 1993). 

Additionally, compared with the experimental results (Martin 1993) from URL depicted 

in Figure 3.19, the trends of CIS for same-porosity models and LdB granite specimens 

follow a similar pattern in the data range of this study (25-125mm), decreasing slightly 

and then reaching a minimum value. In the data range, UCS fluctuates with no evident 

trend, which is in some sense close to the trend of UCS for same-porosity models. 

3.3.2.2 Net effect of particle size distribution 

Having eliminated the effect of porosity, the pure influence of the particle size distribution 

on macro-properties is investigated, as plotted in Figure 3.20. Interestingly, the variations 

of UCS, Young’s modulus, Poisson’s ratio and BTS are the same, decreasing first 

dramatically and then gradually with increasing grain size heterogeneity ( max min/d d  ). 

Similarly, the particle size distribution also has a significant impact on CIS and UCS/BTS 

which reduce with increasing max min/d d  , as given in Figure 3.21. Consequently, our 

results are also in line with the findings from Peng et al. (2017b) and Liu et al. (2018) 

that the strengths of intact rocks decrease as the grain size heterogeneity increases.  



Chapter 3 

55 

 

 

 

Figure 3.20 Effect of PSD on (a) UCS, (b) Young’s modulus, (c) Poisson’s ratio and (d) 

BTS for the same-porosity FJM3D model. 

 

                     (a)                                         (b)  

Figure 3.21 Effect of PSD on (a) CIS and (b) UCS/BTS ratio the same-porosity FJM3D 

model. 

(a) (b) 

(c) (d) 
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3.3.3 Comparisons of simulation results using FJM3D and PBM3D 

Figure 3.22 compares the variations of UCS, Young’s modulus and Poisson’s ratio with 

model size ( /D d ) for same-porosity FJM3D and PBM3D models (Ding et al. 2014) 

with max min/ 6d d =  (Case IV). As /D d  increases, the Young’s modulus and Poisson’s 

ratio for the two kinds of specimens follow a similar pattern, decreasing first and then 

reaching a minimum. The variations of the UCS for FJM3D models also give such a trend, 

but that for PBM3D models is very different, for which the UCS increasing steadily with 

increasing model size. Since the effects of porosity and PSD are eliminated, the trend 

difference of UCS between FJM3D and PBM3D models can only be attributed to the 

difference of the adopted contact models.  

 

                     (a)                                         (b)  

 

                     (c)            

Figure 3.22 Comparison of the model size effect on (a) UCS, (b) Young’s modulus and 

(c) Poisson’s ratio for FJM3D and PBM3D models (Ding et al. 2014) with max min/ 6d d = . 
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Similarly, the effects of PSD on UCS, Young’s modulus and Poisson’s ratio for the 

FJM3D and PBM3D models are compared (considering the space, pictures are not 

provided here). The results indicate that the variations of UCS and Young’s modulus 

except Poisson’s ratio with grain size heterogeneity ( max min/d d ) are the same for the two 

models. The discrepancy of the Poisson’s ratio is also due to the different contact models. 

In addition, CVs of UCS, Young’s modulus and Poisson’s ratio for FJM3D and PBM3D 

models are compared and plotted in Figure 3.23. All of them decrease as a function of the 

model size. For each /D d , the CVs of UCS and Young’s modulus for the two models 

are comparable, while CV of the Poisson’s ratio for FJM3D models is far larger than that 

for the PBM3D models. This difference probably arises from the special microstructure 

of FJM which leads to the big variability of diametrical strain under uniaxial compression. 

As a result, it is further confirmed that the contact constitutive model plays a role in the 

effects of model size and PSD.  

 

Figure 3.23 Comparison of the model size effect on CVs of UCS, Young’s modulus and 

Poisson’s ratio for FJM3D and PBM3D models (Ding et al. 2014) with max min/ 6d d = . 
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3.4 Discussion 

So far, there have been three major size-effect models put forward for brittle or quasi-

brittle materials, such as rocks and concrete, based on statistics (Weibull 1951), fracture 

energy (Bažant 1984) and multifractals (Carpinteri et al. 1995). As a statistical model, 

the strength size-effect relation established by (Hoek and Brown 1980) is suitable for 

crystalline rocks rather than for sedimentary rocks (Hawkins 1998), expressed by 

 0.18

50

50
( )cd c

d
 =   (3.4) 

where cd  and 50c  are UCS of a sample with diameter of d and 50mm, respectively.  

 

Figure 3.24 Size-effect on the mean UCS obtained from the same-porosity FJM3D 

models using Eq. (3.4). 

This formula is used to fit the nondimensionalized UCS of same-porosity FJM3D models 

as shown in Figure 3.24. The results indicate that the size-effect relation well captures the 

variation of UCS when the sample diameter is less than or equal to 50mm, but it begins 

to underestimate UCS which remains nearly invariable with increasing diameter. Thus, it 

is suggested that considering the influence of the model size using FJM, the special 
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treatment, such as introduction of initial micro-fractures (Zhang et al. 2011) and discrete 

fracture network (DFN) (Bahrani and Kaiser 2016; Esmaieli et al. 2010), is only needed 

if D/d of the specimen is above 20. 

Bažant (1984) pointed out that the size effect in concrete and rock was induced by the 

blunting of the microcracking zone at the fracture front, and proposed a size-effect 

relation (SEL), Eq. (2.1). After that, on the basis of the topological concept of geometrical 

multifractality, the multifractal scaling relation (MFSL), Eq. (3.5), was put forward by 

Carpinteri et al. (1995). 

 1 ch
N c

l
f

d
 = +   (3.5) 

in which N  is the nominal strength (e.g. UCS, BTS and point-load strength); d  is the 

sample diameter; tf  is a strength parameter; cf  and chl  are constants that represent 

the strength of an infinitely large sample and an intrinsic material length, respectively. 

The mean BTS indices for same-porosity FJM3D models are depicted in Figure 3.25. All 

the fitting constants are listed in Table 3.6, and are compared with those obtained from 

Gosford Sandstone (Masoumi et al. 2018). According to the coefficient of multiple 

determination ( 2R ) values, both SEL and MFSL provide a good fit to the tensile strength 

data from the same-porosity FJM3D models. Therefore, in good agreement with 

experimental findings, the BTS indices obtained from same-porosity FJM3D models also 

follow the generalized size-effect trend where the strength decreases with increasing size. 

Additionally, as the grain size heterogeneity ( max min/d d ) increases, tBf  (except for Case 

I) and chl  ascend gradually, while 0 maxd  and cf  keep descending. This result appears 

to be new to the authors’ knowledge, as such variation rule has not been reported up to 

now, which should be supported by experiments in future. 
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Figure 3.25 Comparisons of the size-effects on the mean BTS obtained from the same-

porosity FJM3D models using Eqs. (2.1) and (3.5). 

Table 3.6 List of fitting constants for SEL and MFSL obtained from BTS of same-porosity 

FJM3D models and Gosford Sandstone (Masoumi et al. 2018). 

Specimen 

 SEL  MFSL 

 
tBf

(MPa) 

0 maxd

(mm) 

2R  

 
cf

(MPa) 
chl (mm) 2R  

Case I   12.19 221.12 0.98  8.62 36.15 0.99 

Case II  11.06 145.07 0.94  7.09 42.96 0.98 

Case III  11.66 71.32 0.90  5.95 60.90 0.96 

Case IV  12.64 51.86 0.86  5.52 81.06 0.92 

Gosford Sandstone  3.85 77.50 0.94  2.36 24.59 0.77 

3.5 Summary 

In this chapter, a new calibration process was put forward to calibrate the micro-

parameters of FJM, and rN N  equal to 1 4  was suggested to be the combination 

for the best calculation efficiency. The calibrated FJM specimen well captures the 

mechanical behaviours of LdB granite by overcoming the three intrinsic problems in the 
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classical DEM models. Based on the calibrated microscopic parameters, a suite of 

standard and same-porosity FJM3D models were created to investigate the effects of 

model size and particle size distribution on the macroscopic properties under uniaxial 

compression and Brazilian tests. The main conclusions are as follows: 

(1) As the model size increases, the simulated results begin to converge. Combining 

the requirements of ASTM and ISRM for both uniaxial compression and Brazilian 

tests, max/D d  should be greater than or equal to 20. The requirement ensures an 

adequate reliability of the results, since max/D d  of the models for Cases I-IV 

correspond to 20, 16, 16.7 and 14.6, respectively, under 5% acceptable variation. 

(2) The model porosity has a significant influence on strengths of FJM3D models, 

UCS and BTS of which decrease linearly with increasing porosity. Having 

eliminated the influence of the model porosity, the pure effects of the model size 

and particle size distribution are captured. With increasing model size, UCS, CIS, 

Young’s modulus and Poisson’s ratio first decrease and then reach a minimum, 

while BTS follows a descending trend and UCS/BTS maintains increasing 

gradually. Moreover, all the macro-properties decrease with the grain size 

heterogeneity ( max min/d d ), which are in agreement with the findings from Peng 

et al. (2017b) and Liu et al. (2018). 

(3) Comparing the results obtained from FJM3D and PBM3D models, it is also 

demonstrated that the constitutive contact model plays a role in the effects of 

model size and particle size distribution. 

(4) Only when /D d  of the specimen is less than or equal to 20, the UCS follows 

the decreasing trend. In the range ( / 10 50D d = ) in this research, BTS follows 

the generalized descending trend, best fitted by fracture energy and multifractal 

size-effect models for which fitting constants are functions of grain size 

heterogeneity. 
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CHAPTER 4 SIZE EFFECT AND ANISOTROPY IN A 

TRANSVERSELY ISOTROPIC ROCK UNDER 

INDIRECT TENSILE CONDITIONS 

4.1 Introduction 

In recent years, the behaviour of transversely isotropic rocks, e.g., gneiss, schist, slate, 

phyllite, shale, mudstone and layered sandstone, has attracted an increased attention (Fu 

et al. 2018; Kundu et al. 2018; Sesetty and Ghassemi 2018; Setiawan and 

Zimmerman 2018; Xu et al. 2018). In general, the anisotropic characteristics originate 

from the stratification in the sedimentary rock, mineral foliation in metamorphic rocks 

and discontinuities in rock masses (Cho et al. 2012). The anisotropy is one of the most 

distinct features that has to be considered in this kind of rocks which are widely 

encountered in civil, mining, petroleum, geothermal and geo-environmental engineering 

(Ma et al. 2018). 

The tensile strength plays an important role, and is often the most vital role in rock 

engineering, because rocks usually are weaker in tension than compression or shear (Dan 

et al. 2013). Moreover, tensile failure has great influence in many rock engineering 

activities, such as drilling, cutting and blasting of rocks, hydraulic fracturing of a wellbore 

or a tunnel, exploitation of rock slopes, and excavation of underground structures (Chen 

and Hsu 2001; Goodman 1989). Hence, for engineering practice, the determination of 

tensile strength of rocks is indispensable. Compared to the high requirement for 

experimentation with the direct tensile tests (Liao et al. 1997; Shang et al. 2016) or the 

high requirement for sample preparation with the ring tests (Barla and Innaurato 1973; 

Chen and Hsu 2001), the Brazilian test is a more common and easy method for 

measuring the tensile strength of rock. However, the use of the formula for the Brazilian 

tensile strength requires the material to be isotropic. To improve the Brazilian test so that 

it can be useful for determining the tensile strength of transversely isotropic rocks, much 

work has been done by theoretical, experimental and numerical methods (Aliabadian et 

al. 2017; Cai and Kaiser 2004; Chen et al. 1998; Claesson and Bohloli 2002; 

Exadaktylos and Kaklis 2001). Among these, a reasonably accurate equation for the 

principal tension at the rock disc center based on elastic constants and anisotropic angle 
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was proposed (Claesson and Bohloli 2002), which approximates well to the tensile 

strength of transversely isotropic rocks. 

The pioneering work on the anisotropy of tensile strength for transversely isotropic rocks 

was done by Hobbs (1964), who conducted Brazilian tests on laminated siltstone, 

sandstone and mudstone to measure their tensile strengths. Since then, many researches 

have been carried out on this issue (Ma et al. 2018). The published results showed that 

the tensile strength of transversely isotropic rocks greatly depended on the angle (β) 

between the loading direction and the transversely isotropic plane. Based on Brazilian 

test results of various transversely isotropic rocks, Vervoort et al. (2014) classified four 

trends for the variation of the tensile strength with β: (1) trend I for which the tensile 

strength almost keeps constant; (2) trend II for which the tensile strength increases first 

and then remains constant; (3) trend III for which the tensile strength increases 

systematically, and (4) trend IV for which the tensile strength stays constant first and then 

increases linearly. Recently, a U-shaped distribution exhibited by a slate was added into 

the classification as trend V (Xu et al. 2018). In addition, three typical failure modes have 

been observed (Dan et al. 2013; Tavallali and Vervoort 2010; Tavallali and Vervoort 

2013): (1) fractures along the transversely isotropic planes in the low β range; (2) fractures 

across the isotropic planes in the high β range and (3) mixed fractures along and across 

the isotropic planes in the intermediate β range. Further, Hu et al. (2017) revealed the 

main cause for the three failure modes by means of scanning electron microscopy (SEM). 

The results indicated that with β increasing, the fracture morphology transforms from an 

intergranular fracture pattern along the bedding plane to across the rock matrix, and is a 

coupled intergranular with transgranular fracture when β = 45°. 

When upscaling the strength and elasticity properties obtained from laboratory to 

practical engineering design, the size effect must be taken into consideration (Li et al. 

2018). As a key input parameter in engineering applications, the size effect on the tensile 

strength of transversely isotropic rocks must be understood. Nevertheless, the existing 

size effect relations are almost all derived from the isotropic rock or rock-like materials 

(Bažant 1984; Bažant 1997; Carpinteri et al. 1995; Hoek and Brown 1980; Masoumi 

et al. 2015), neglecting the influence of rock anisotropy. Consequently, a suitable relation 

capturing both the size effect and the anisotropy of the tensile strength of transversely 

isotropic rocks is urgent to be unveiled. For this purpose, Brazilian tests were conducted 
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on slate specimens of six different sizes (25-100 mm) with seven various β (0-90°) in this 

study. During the test, the load and strain data were recorded. On the basis of the observed 

information, size effects on elastic properties and tensile strength were investigated in 

detail. 

4.2 Theoretical background 

4.2.1 Constitutive model of transversely isotropic rocks 

β

P

P

t

x

y

isotropic

planes

y

D
z (z')o

x'y'

o

 

Figure 4.1 The disc geometry of a transversely isotropic material under diametral loading. 

As presented in Figure 4.1, the disc of a transversely isotropic material under diametral 

loading (Brazilian test) has a diameter D and a thickness t. The angle between global (x, 

y, z) and local (x’, y’, z’) co-ordinate systems is 2 − , as shown in Figure 4.1. The 

local system is attached to the transversely isotropic plane, with x’-axis and y’-axis 

parallel to and perpendicular to the isotropic plane, respectively, and the z’-axis 

coinciding with the z-axis. If the disc is loaded with force P, the stresses x , y , and 

xy  within the disc can be expressed in the form of stress concentration factors (SCFs) 

xxq , 
yyq , and 

xyq  (Amadei 1996): 
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A generalized plane stress formulation was used, then the constitutive law is expressed 

as, 
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  (4.2) 

As the medium in the direction parallel to the transversely isotropic plane is postulated to 

be linearly elastic, homogeneous and continuous, (Amadei 2012) put forward the 

expression of 
ija  as, 
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  (4.3) 

where E  and E  represent the elastic moduli parallel to and perpendicular to the plane 

of transverse isotropy, respectively;    and G  are the Poisson’s ratio and the shear 

modulus in the direction normal to the transversely isotropic plane, respectively. Note that 

the parameters 
ija   in Eq. (4.3) only depend on E  , E  ,     and G  , and are 

independent of   which is the Poisson’s ratio in the plane of transverse isotropy. 

4.2.2 Determination of elastic constants for transversely isotropic rocks 

Loureiro-Pinto (1979) first determined the elastic constants of anisotropic rocks by 

means of Brazilian tests. Later, the Loureiro-Pinto’s procedure was revised by Amadei 

(1996), and a more accurate solution was given by Chen et al. (1998) who combined the 

Brazilian test and the generalized reduced gradient (GRG) method. However, the theorem 
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and mathematical computation procedure in the approach proposed by Chen et al. (1998) 

are rather complicated. To overcome the problem, Chou and Chen (2008) developed a 

more convenient method. This approach combines the Brazilian test and a commercial 

numerical program (e.g. finite difference program, finite element program or boundary 

element program), and the iterative solution procedure is shown in Figure 4.2 and 

described briefly as follows:  

Specimen 

preparation

Disc type N Disc type P

E, v

εxπDt/P

εyπDt/P

γxyπDt/P

Initial SCF

qxx=-2, qyy=6, qxy=0

Eq. (4.2)

Temporary

E＇, v＇, G＇

FLAC3D Convergent

σx, σy, τxy at center

Eq. (4.1)

New SCF qxx, qyy, qxy

Final results

E, v

Final results

E＇, v＇, G＇

Yes

No

 

Figure 4.2 Flowchart of iteration for calculating the elastic constants modified from Chou 

and Chen (2008). 

(1) Brazilian tests are performed on two types of specimens: Type N (the central axis 

normal to the transversely isotropic plane) and Type P (the central axis parallel to 

the transversely isotropic plane). The strains at the disc center are obtained by Eq. 

(4.4), and H , 45  and V  are measured by 45° strain rosettes in test. The E  

and   are calculated by Eq. (4.5). 

(2) The temporary E  ,     and G   are computed by substituting x Dt P   , 

y Dt P  , xy Dt P   and SCFs into Eq. (4.2). 
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(3) The five elastic constants obtained by previous steps are applied in the numerical 

simulation of Brazilian tests, and FLAC3D adopted in this study. The new SCFs 

are computed by Eq. (4.1).  

(4) Steps (2) and (3) are repeated until E ,    and G  have converged, and the 

difference between two successive cycles below 0.1% is adopted as the 

termination criterion. 

 45
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Meanwhile, to determine the elastic constants for a transversely isotropic medium, E , 

  , E  ,     and G   must satisfy the following thermodynamic constraints (Amadei 

1996; Chen et al. 1998): 
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  (4.6) 

4.3 Material and methods 

4.3.1 Sample preparation 

To minimize the influence of discreteness, five blocks of slate were taken from the same 

location in a slate quarry in Jiujiang, Jiangxi Province, China. The slate is a metamorphic 

Precambrian rock from sedimentary rocks. The slate possesses a well-developed slaty 

structure, with the layers of which being very straight (Figure 4.3a), as compared to the 

ripple layers of shale which exhibits dark grey to light grey colours. Moreover, a thin 

section of the slate normal to the foliation planes is observed by an optical microscopy 

and shown in Figure 4.3b. It is observed that the sample has a layered texture comprised 
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of granular calcite (5%), flaky sericite (25-30%), angular feldspar and quartz (65-70%), 

with a very fine grain size in the range of 0.01-0.05mm. Figure 4.3c further displays that 

the slate is tightly packed with strongly oriented rock fragments using SEM. The natural 

density of the slate is 2759±5 kg/m3.  

 

              (a)                           (b)                           (c) 

Figure 4.3 (a) The appearance of the slate; (b) a thin section image of the slate; (c) a SEM 

image of the slate. 

The core specimens were drilled parallel to the foliations (Type P) and perpendicular to 

the foliations (Type N) with diameters of 25, 38, 50, 63, 75 and 100 mm, and were then 

cut into disc specimens. The thickness (t) of each disc specimen was fixed at 0.5 diameter 

(D) of the specimen. The end surfaces of the disc specimens were polished to satisfy the 

standard for tests (ASTM 2016). The prepared disc slate samples of six different 

diameters are shown in Figure 4.4. Additionally, the P-wave velocities of slate samples 

were tested with inclination angle (β) 0°, 15°, 30°, 45°, 60°, 75° and 90° by using a 

Tektronix DPO 2012B Oscilloscope, OLYMPUS 5077PR wave pulser/receiver and two 

OLYMPUS V195 ultrasound probes. The variation of the P-wave velocities (
pv ) with β 

is depicted in Figure 4.5. The results indicate that 
pv  decreases from 6002 to 4760 m/s 

with increasing β because of the increased influence of foliations on the ultrasound 

transmitting within the slate sample. Based on the anisotropy classification proposed by 

Tsidzi (1997), using a velocity anisotropy index (VA) expressed as Eq. (4.7), the slate 

(VA=22.9) is classified as a highly anisotropic rock. 

 max min (%)
mean

V V
VA

V

−
=   (4.7) 
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in which maxV  , minV   and meanV   are the maximum, minimum and average ultrasonic 

wave velocities, respectively. 

 

Figure 4.4 Preparation of disc slate samples of various diameters 
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Figure 4.5 The variation of P-wave velocities of slate specimens with β. 

4.3.2 Test procedure 

The layout of the test devices is shown in Figure 4.6a. To ensure accuracy, a VJ tech 

machine with a low loading capacity of 100 kN was employed to conduct the Brazilian 

tests. The loading rate was controlled at 0.3 mm/min. Among the typical loading 

configurations suggested by ASTM (2016) and ISRM (1978), the flat loading platens 

were chosen for this size-effect study. The reason behind is that the ratio of steel rod 
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diameter to specimen diameter (for flat loading platens with two small-diameter steel rods) 

or the contact angle (for curved loading jaws) is a function of the specimen diameter 

which will greatly affect the measured tensile strength (Komurlu and Kesimal 2015; 

Markides and Kourkoulis 2012; Rocco et al. 1999a). In addition, strains at the disc 

center of the specimen were obtained by a 45° strain rosette with a length of 3mm (Figure 

4.6b), which should not exceed 10% of the diameter of the disc (Chen et al. 1998). During 

the test, the load and strains were recorded simultaneously using a Kyowa datalogger. 

Moreover, the AE signals were monitored by a PAC PCI-2 AE detection system (Li et al. 

2015), and two PICO sensors were used, arrangements of which are showed in Figure 

4.6b. Meanwhile, the fracture conditions of specimens in the test were recorded through 

a Photron FASTCAM SA-Z high-speed camera with the LED lighting. 

LED Lighting

Brazilian testing 
machine

High-speed Camera

AE System

Data Logger

Flat loading 
platens

β

P

P

V

H

45°
x

y

foliation

planes

45° strain 

rosette

AE sensor

 

                           (a)                                            (b) 

Figure 4.6 (a) The test setup for Brazilian tests; (b) the arrangements of strain gauges and 

AE sensors. 

4.4 Results and discussion 

4.4.1 Size-effect on the elastic properties 

As an illustrative example, Figure 4.7a and 4.7b show the typical stress-strain curves of 

disc slate samples of Type N and Type P, respectively. The x Dt P  , y Dt P   and 



Chapter 4 

72 

xy Dt P   used in section 4.2.2 to compute E ,    and G  correspond to the secant 

values at 50% peak stress as depicted by the green lines in Figure 4.7. 
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                      (a)                                         (b) 

Figure 4.7 Typical stress-strain curves of slate specimens under Brazilian tests (strains 

measured at the centre of the disk): (a) Type N and (b) Type P. 

Table 4.1 Mean values of elastic constants determined on slate with different diameters 

using Brazilian tests. 

Diameter of 

specimen (mm) 

No. of 

tests 

E  

(GPa) 

E  

(GPa) 
      

G

(GPa) 
/E E  

25 28 56.3 68.1 0.29 0.28 31.2 0.83 

38 24 81.4 41.9 0.28 0.30 26.5 1.94 

50 25 78.7 55.8 0.28 0.27 30.2 1.41 

63 30 71.2 45.2 0.23 0.30 19.4 1.58 

75 33 70.1 39.2 0.16 0.20 19.6 1.29 

100 29 89.8 28.1 0.32 0.21 16.2 3.19 

Theoretically, only two disc samples are needed to determine the five elastic constants of 

transversely isotropic rocks by the Brazilian tests. To ensure accuracy, in this study, more 

than two specimens were employed to measure the elastic constants of slate for each size, 

as listed in Table 4.1. E , E , G ,   and    results for each size slate specimens are 

listed in Table 4.1 and plotted in Figure 4.8. E  dramatically increases as the sample 

diameter increases from 25 to 38 mm, then fluctuates when the sample diameter is in the 

range of 38-75 mm, and finally increases again until the sample diameter reaches 100 mm. 
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The total trend of E  is increase with specimen size, which is similar with that observed 

in the Blanco Mera granite (Quiñones et al. 2017) and Stanstead granite (Walton 2017). 

It is because E  and   are obtained by Type N samples, in which the foliation planes 

have little influence on the deformability of transversely rocks under Brazilian tests. At 

this point, the slate of Type N and the two granites are treated as isotropic rocks, 

irrespective of rock anisotropy. The ascending size-effect on E  can be attributed to the 

near-surface damage during sample preparation. The bigger specimens have a less surface 

area-to-volume ratio ( 4 R  for Brazilian discs), so the bigger specimens can be expected 

to be more rigid with less damage densities. In contrast, E  ,     and G   were 

determined by Type P samples, in which the foliation planes have a great influence on the 

deformability of transversely rocks under the Brazilian tests. Moreover, the stiffness of 

the foliation plane is far smaller than that for the rock matrix. The increasing number or 

volume of foliation planes per unit volume in the loading direction with increasing sample 

diameter reduces the rigidity of the sample, which can explain the decrease with the 

sample diameter as shown in Figure 4.8a for E  and G . The singularities of E  for 

38-mm-diameter sample and of G  for 50-mm-diameter sample may be induced by the 

higher effect of the surface damage in sample preparation than the foliation plane. 

Additionally,   and    do not present an evident size effect as depicted in Figure 4.8b.  
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                      (a)                                         (b) 

Figure 4.8 (a) E, E’, G’ and (b) v, v’ results for slate specimens of different diameters. 

The error bar represents one standard deviation. 

The shear modulus G  is often obtained (Togashi et al. 2017) using the Saint-Venant’s 
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empirical relation (Saint Venant 1863): 

 
1 1 1

2
SVG E E E

 
= + +
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  (4.8) 

Cho et al. (2012) investigated the validity of the empirical equation and found that the 

equation did not agree well with the experimental data obtained from Asan gneiss, 

Boryeong shale and Yeoncheon Schist. With respect to this issue, results of G  obtained 

from experiment and theory for the slate of various diameters are compared and shown 

in Figure 4.9. The results demonstrate that with the sample diameter increasing, the 

difference between G  measured by experiment and that predicted by theory decreases 

gradually, almost equal to zero when D=100mm. 
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Figure 4.9 The comparison between Saint-Venant’s empirical values ( SVG  ) and 

experimental ones ( G ). 

4.4.2 Size-effect on the tensile strength 

As mentioned in section 2.2.1, the indirect tensile strength ( t ) is well approximated as 

the principal tension at the disc center (Claesson and Bohloli 2002). 

For each condition (a prescribed size and  ), there are three to five slate samples being 

tested. The tensile strength results for each of sample tested are plotted in Figure 4.10. 
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The results indicate that the variation of t   with    for specimens of different sizes 

mostly exhibits trend III: t   increasing systematically with   . Sometimes the 

minimum t   occurs at 15° or 30° which is consistent with those observed in other 

transversely isotropic rocks (Khanlari et al. 2015; Mighani et al. 2016). 

4.4.2.1 Assessment of tensile failure criteria 

In order to assess the performance of existing typical tensile failure criteria as mentioned 

in section 2.2.1, three different assessment indicators are employed (Ma et al. 2017). 

They are the maximum absolute relative error (MARE), the average absolute relative error 

(AARE), and the standard error (SE), defined by the following formulae: 
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The three assessment indicators can reflect the reliability or misfit of each failure criterion 

that the higher MARE, AARE and SE illustrate the lower reliability and higher misfit, and 

vice versa. The order of failure criteria is sorted according to the magnitude of MARE, 

AARE and SE when the four failure criteria are evaluated. Note that the SE is 

recommended as the final assessment indicator in case that the order of MARE, AARE and 

SE is not same for a certain failure criterion.  

The comparisons between the predicted and test results are given in Figure 4.10, and the 

evaluation results using MARE, AARE and SE are listed in Table 4.2. The results indicate 

the orders of the reliability of the failure criteria are: (1) N-Z > L-P > H-B > SPW for the 

25-, 38- and 50-mm-diameter specimens, (2) N-Z > H-B > L-P > SPW for the 63- and 

100-mm-diameter specimens, and (3) L-P > SPW > N-Z > H-B for the 75-mm-diameter 

specimens. Except for the 75-mm-diameter specimens, the predicted results by N-Z 
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criterion are the most in line with those from the experiments. Therefore, the N-Z criterion 

is recommended to describe the anisotropy of the tensile strength of the slate. 

Table 4.2 Assessment indicators (MARE, AARE and SE) of slate specimens with different 

diameters. 

Diameter of 

specimen (mm) 
Indicators 

Results of the Assessment 

H-B N-Z SPW L-P 

25 

MARE 0.923 0.493 0.923 0.666 

AARE 0.208 0.107 0.258 0.168 

SE 3.801 1.995 4.270 2.832 

38 

MARE 0.454 0.159 0.643 0.369 

AARE 0.117 0.062 0.184 0.167 

SE 2.568 0.863 3.576 2.386 

50 

MARE 0.511 0.381 0.558 0.434 

AARE 0.192 0.166 0.232 0.201 

SE 3.011 2.080 3.888 2.945 

63 

MARE 0.531 0.203 0.770 0.521 

AARE 0.185 0.116 0.261 0.234 

SE 2.199 0.983 3.073 2.271 

75 

MARE 0.322 0.330 0.339 0.186 

AARE 0.147 0.119 0.120 0.090 

SE 1.593 1.420 1.362 0.868 

100 

MARE 0.206 0.195 0.393 0.323 

AARE 0.091 0.089 0.129 0.140 

SE 0.930 0.818 1.591 1.092 
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Figure 4.10 The relationship between indirect tensile strength and β for slate specimens 

of different diameters: (a) d=25mm; (b) d=38mm; (c) d=50mm; (d) d=63mm; (e) 

d=75mm and (f) d=100mm. 

(a) (b) 

(c) (d) 

(e) (f) 
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4.4.2.2 Anisotropic size-effect of tensile strength 

Based on the existing size-effect models referring to section 2.1 and the experimental data 

of this study as shown in Figure 4.11, three principles defining the size-effect response 

are as follows: 

(1) The relationship between tensile strength and specimen size depends on the 

mechanical properties of the material. 

(2) The variation of tensile strength with specimen size shows both ascending and 

descending trends, and is correlated with the loading-foliation angle. 

(3) For samples of a prescribed shape, the tensile strength has the upper and lower 

boundaries with the sample size varying. 

Thus, the SEL and FFSEL are recommended to describe the size dependency of tensile 

strength of the slate. This combination has the advantages in capturing the increasing and 

decreasing trends with the common parameters ( 0d ). 

Based on the SEL, when the upper and lower boundaries are considered, the size-effect 

relation is transformed as, 

 0
1

( )
( )

1

M
MT d

d
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−
= +

+

  (4.12) 

where 1( )T d  is the tensile strength of specimen with the diameter of d ; 0= d   with 

unit of length; 0   and M   are the tensile strength when 0d →   and d →   , 

respectively. 

Correspondingly, the FFSEL is transformed as, 
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  (4.13) 

where, 2 ( )T d  has the same meaning with 1( )T d ; fd  represents the fractal dimension; 
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0  is the tensile strength when 0d → . 
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Figure 4.11 The size effects on the indirect tensile strength of slate samples with different 

loading-foliation directions. The error bar represents one standard deviation. 

The curved fitted results of Eqs. (4.12) and (4.13) are shown in Figure 4.11, and the fitting 

parameters ( 0  , M  ,   , 0   and 
fd  ) of the equations in every loading-foliation 

direction are listed in Table 4.3. The fitted curves are in agreement with the experimental 

data, and correlation coefficients of Eqs. (4.12) and (4.13) are greater than 0.73. The 

results indicate that with specimen diameter increasing, the tensile strength maintains 

decreasing when β lies within 0-45°, and the tensile strength increases first and then 

decreases when β is in the range of 60-90° or the specimen belongs to Type N. The 

transition occurs at β lies within 45-60°, which may be attributed to the change of failure 

modes in this range. The results are elaborated in the following. When β lies within 0-45°, 

the tensile strength of slate is mainly dependent on the strength of the foliation planes, 

displaying the failure mostly along the foliation plane. When β lies within 60-90° or the 

specimen belongs to Type N, the tensile strength of the slate is primarily determined by 

the strength of rock matrix, exhibiting the failure mostly across the foliation plane. The 

typical descending size-effect can be attributed to the Fairhust’s theory (Fairhurst 1971), 

originated from elastic energy principles, that the product of the length of the critical flaw 

and the square of strength of tested sample is constant. The length of the critical flaw is 

proportional to the specimen size. Thus, the strength is reduced as the specimen diameter 

increases. On the other hand, the reverse size effect observed in the slate specimens can 
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be explained that the smaller specimens have the lower strength because of the higher 

surface damage density or the developing cracks more inclining to intersect the free 

sample surface in smaller specimens (Quiñones et al. 2017). 

Table 4.3 Fitting parameters in Eqs. (4.12) and (4.13) when the slate specimen is loaded 

in various directions. 

  (°) 0 15 30 45 60 75 90 Type N 

0  (MPa) 76.45 78.63 77 108.76 127.21 167.16 205.43 153.66 

M  

(MPa) 

0 0 0.68 0.95 0.97 1.04 1.13 9.84 

0 - M   

(MPa) 

76.45 78.63 76.32 107.81 126.24 166.12 204.3 143.82 

  0.36 

2R  0.73 0.75 0.80 0.81 0.85 0.80 0.83 0.76 

0  - - - - 6.75 10.57 12.21 6.54 

fd  - - - - 2.61 2.99 

2R  - - - - 0.79 0.86 0.89 0.88 

Referring to Table 4.3, 0  and M  exhibit an almost increasing trend with β; 0  also 

keeps increasing as β increases from 60° to 90°; but the parameters of   and 
fd  are 

basically constant. It is worth noting that the curve fitting parameters for the Type N 

specimen are greatly different from those obtained for Type P specimens, except for  . 

The results also suggest that the loading direction plays an important role in the size-

effect response. 

In addition, in order to compare the anisotropy of the size effect on the tensile strength of 

the slate, the derivative of Eq. (4.12) is deduced as, 
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where 1( )T d   is the derivative of 1( )T d  . Values of 1( )T d   are negative since 0 M −  
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and   are positive as listed in Table 4.3. The values of 1( )T d  are comparable when β = 

0-30°, reaching the maximum value. 1( )T d   is the minimum value when β = 90°. It 

implies that the downward size effect on the tensile strength of the slate is strongly 

increasing with β, reaching the strongest value when β=90°. 

Table 4.4 The predicted REVT  by Eq. (4.12) for the slate specimen of d = 300 mm loaded 

in various directions. 

  (°) 0 15 30 45 60 75 90 

REVT  (MPa) 2.65 2.72 3.32 4.68 5.34 6.79 8.20 

Table 4.5 The variation of parameters bT  and mT  with specimen size increasing. 

Diameter 

(mm) 
25 38 50 63 75 100 300 

bT  (MPa) 8.25 7.60 6.32 5.46 5.82 3.80 2.79 

mT  (MPa) 18.51 21.58 18.21 16.01 12.55 12.55 8.00 

2R  0.82 0.98 0.88 0.94 0.88 0.97 0.98 

4.4.2.3 Anisotropy of tensile strength 

Darlington et al. (2011) found that the results of specimens of 300-mm-diameter, at 

which asymptotic strength is met, are of crucial importance to large scale design. Thus, 

the tensile strength of 300-mm-diameter specimen is recommended to be taken as the 

tensile strength of representative elementary volume (REV), which is termed as REVT . 

The predicted REVT  by Eq. (4.12) are listed in Table 4.4, which increases steadily with 

increasing β. Furthermore, the experimental data as fitted by Eq. (2.15) are plotted in 

Figure 4.12, and the curve fitting parameters bT   and mT   are listed in Table 4.5. bT

characterizing the tensile strength of weak planes decreases gradually, and mT

characterizing the tensile strength of the rock matrix, increases first and then decreases 

with increasing specimen size. The variation rules correspond to the two kinds of size-

effect responses as depicted in the previous section (see Figure 4.11). It further illustrates 

that the transition of size-effect trends is closely related to the change of the failure modes.
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Figure 4.12 Comparison of experimental data or predicted 
REVT  with fitted curves by Eq. (2.15) for the slate specimen of (a) d=25mm; (b) d=38mm; 

(c) d=50mm; (d) d=63mm; (e) d=75mm; (f) d=100mm and (g) d=300mm. 
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(e) 

(f) (g) 
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The curve fitted results agree well with the experimental data, with correlation 

coefficients > 0.82 for various specimen diameters (25-300 mm). In summary, the N-Z 

criterion is capable of describing the anisotropy of tensile strength of the slate for different 

sample sizes. 

4.4.2.4 Universal equations for size-effect and strength anisotropy 

A unified size-effect relation capturing the relationship among tensile strength, sample 

size and loading direction in transversely isotropic rocks is vital for the correct estimation 

of the rock strength of a certain specimen size under a given loading direction. As M  

and 0  of Eq. (4.12) and 0  of Eq. (4.13) can be replaced by Eq. (2.15), two universal 

equations describing both size effect and anisotropy in transversely isotropic rocks are 

proposed in the forms: 

(1) Using Eq. (2.15) to substitute M  and 0  of Eq. (4.12),  
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 (4.15) 

where 1( , )T d    is the tensile strength of specimen with a diameter d and a loading-

foliation angle β; 0bT  and 0mT  are the tensile strength of weak plane and rock matrix 

when 0d →  , respectively; bMT   and mMT   represent the tensile strength of the weak 

plane and rock matrix when d →  , respectively;  , as mentioned in Eq. (4.12) denotes 

a material constant with unit of length (mm). 

(2) Using Eq. (2.15) to substitute 0  in Eq. (4.13),  
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in which, 2 ( , )T d    has the same meaning with 1( , )T d   ; 
0bT   and 

0mT   represent the 

tensile strength of weak plane and rock matrix when 0d → , respectively;   is same 

with that in Eq. (4.15); 
fd   as mentioned in Eq. (4.13) is the fractal dimension, with 

dimensionless. 

If both ascending and descending trends are observed in experimental data, let

1 2( , ) ( , )i iT d T d =  , the diameter ( id  ) of specimen at which the maximum tensile 

strength reaches can be determined. 

According to the experimental data observed in the slate, Eqs. (4.15) and (4.16) are fitted 

as Eqs. (4.17) and (4.18) with R2 > 0.93, and the two fitted surfaces are plotted in Figure 

4.13. 

 

Figure 4.13 Comparison of experimental data with two theoretical surfaces fitted by Eqs. 

(4.17) and (4.18) for slate specimens of various diameters. 
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Combining Eqs. (4.17) and (4.18), id  for   = 60°, 75° and 90° are 41.0 mm, 35.2 mm 

and 34.1 mm, respectively. The predicted results are comparable to the experimental 

results (Figure 4.11b), presenting a downward trend with increasing   . The 

corresponding maximum tensile strength of the slate for    = 60°, 75° and 90° are 

13.32MPa, 18.35 MPa and 21.75 MPa, respectively. 

As seen from the discussion, Eqs. (4.15) and (4.16) are providing a method to obtain the 

tensile strength of slate with sample size and anisotropy varying. Moreover, the 

characteristic properties of the strength of representative elementary volume, upward and 

downward size-effect trends and the specimen diameter corresponding to the maximum 

strength are all combined to enable a systematic description of behaviour to be assessed. 

Nevertheless, the two equations suffer from the problem that specimens of different sizes 

and anisotropic angles are needed to determine the parameters in the equations for a 

certain material. It is also highlighted that more research into this issue is needed to 

demonstrate the capability of the proposed equations for other transversely isotropic rocks.  

4.4.3 Size-effect on the tensile failure pattern 

The failure pattern of a slate specimen under the Brazilian test is nearly two-dimensional, 

mostly being similar in two flat surfaces. Thus, only the failure pattern in one surface is 

displayed. Figure 4.14 shows the representative fracture patterns of specimens of different 

sizes after testing. The sketches of fracture patterns are also depicted in Figure 4.15. The 

failure pattern is closely related to the loading-foliation angle. For different sizes, the slate 
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specimen under the same loading direction mostly exhibits a similar failure pattern. In 

total, three types of failure patterns are presented: layer activation failure (type I), mixed 

failure (type II), and non-layer activation failure (type III).  

As seen from Figure 4.15, when β lies from 0 to 30° the disc specimen fails mainly in the 

type I; when β lies from 45 to 60° the failure pattern of specimen covers all the three types; 

and when β ranges from 75 to 90° the failure of specimen is mostly manifested by the 

type III failure mode. This result is consistent with those observed by other researchers 

(Dan et al. 2013; Tavallali and Vervoort 2010; Tavallali and Vervoort 2013). As for 

the Type N specimen, it fails by a tensile splitting crack along the loaded diameter 

accompanying the layer activation as shown in Figure 4.15h. 

 

Figure 4.14 The representative fracture patterns of specimens of different sizes after 

testing.  

Further, considering the size-effect, the percentages of the three failure types of specimen 

under different loading-foliation angles are listed in Table 4.6. For β equal to 0° or 90°, 

the specimen size has no influence on the failure patterns of specimens. For β varying 

from 15 to 30°, the failure patterns of specimens include type I and II, and the percentage 
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of type II increases first and then decreases and then stabilizes with the specimen size 

increasing. For β increasing from 45 to 60°, the failure patterns of specimens include all 

the three types, and the percentage of type III increases first and then decreases with the 

specimen size increasing. For β reaching 75°, the failure patterns of specimens include 

type II and III, and the percentage of type III increases first and then decreases and then 

stabilizes with the specimen size increasing. 

(a) (b)

(c)

(d)

(e)

(f)

(g) (h)
 

Figure 4.15 The sketches of fracture patterns: (a) β =0°; (b) β =15°; (c) β =30°; (d) β =45°; 

(e) β =60°; (f) β =75°; (g) β =90° and (h) Type N. 
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Table 4.6 The percentages of three failure types of slate specimens with different diameters (d) under different loading-foliation angles (β). 

d 

(mm) 
β (°) 

Fracture patterns d 

(mm) 
β (°) 

Fracture patterns d 

(mm) 
β (°) 

Fracture patterns 

% of type I % of type II % of type III % of type I % of type II % of type III % of type I % of type II % of type III 

25 

0 100 0 0 

50 

0 100 0 0 

75 

0 100 0 0 

15 67 33 0 15 0 100 0 15 0 100 0 

30 75 25 0 30 0 100 0 30 50 50 0 

45 25 25 50 45 0 33 67 45 0 0 100 

60 50 0 50 60 0 0 100 60 0 25 75 

75 0 25 75 75 0 33 67 75 0 0 100 

90 0 0 100 90 0 0 100 90 0 0 100 

38 

0 100 0 0 

63 

0 100 0 0 

100 

0 100 0 0 

15 0 100 0 15 25 75 0 15 25 75 0 

30 0 100 0 30 25 75 0 30 50 50 0 

45 0 0 100 45 25 50 25 45 0 25 75 

60 0 0 100 60 0 100 0 60 0 25 75 

75 0 0 100 75 0 50 50 75 0 33 67 

90 0 0 100 90 0 0 100 90 0 0 100 
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Generally, the tensile strength of specimen failed by type III is the highest, and that by 

type II is secondary and that by type I is the lowest. The variation of failure pattern with 

the specimen size can account for that of tensile strength with specimen size as discussed 

in section 4.4.2. The percentage of fracture type is also similar to the relative fracture 

length used in the previous study (Tavallali and Vervoort 2010; Tavallali and Vervoort 

2013). 
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Figure 4.16 The size-effect on the maximum transverse strains of specimens of various 

diameters. The solid line represents the mean values. 

4.4.4Size-effect on the transverse strain 

In this study, the maximum transverse strain is defined as the transverse strain measured 

by the horizontal strain gage of the strain rosette at failure. As shown in Figure 4.16, the 

specimen size has an effect on the maximum transverse strains of slate specimens under 

diametral loading. The lowest value of maximum transverse strain occurs at β=0° when 

the specimen diameter is lower than or equal to 50mm, while it occurs at β=15° when the 

specimen diameter is larger than 50mm. Moreover, the maximum transverse strains of 
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specimens under different loading directions generally decrease with the specimen 

diameter, reaching the minimum value at D=100mm. The result implies that the slate 

specimens exhibit an increased brittle failure with the specimen diameter increasing, at 

the transverse strain less than 500 με when D=100mm. It is in good agreement with the 

maximum extension strain of granite under Brazilian tests (Li et al. 2011). Meanwhile, 

similar to the size-effect on tensile strength, the size-effect on maximum transverse strain 

is stronger under high loading-foliation angles than low loading-foliation angles, reaching 

the strongest at the loading-foliation angle of 90°. 

In addition, the transverse strain of specimen also presents an anisotropic variation with 

the loading-foliation angle. As an example, the stress-strain curves and failure modes of 

75-mm-diameter slate specimens under different loading directions are shown in Figure 

4.17. The transverse strains (No. 4 to No.8) along the loaded diameter of specimen were 

measured by a series of horizontal strain gages with a length of 20 mm, enough long to 

capture the fracture initiation point within the specimen. The observed results indicate 

that the transverse strains measured approximated to the regions of load application are 

nonsymmetrical with respect to the Ox-axis. The experimental transverse strains in most 

cases except for β =0° or 15° increase with the distance away from the center of specimen. 

Moreover, based on the measured transverse strains along the loaded diameter, the 

fracture initiation point can be estimated. For instance, the specimen under β of 0° or 15° 

tends to fail starting from the disc center, while under other loading-foliation angles the 

specimen tends to fail starting from the regions of load application. Different from the 

specimen of Type P, the surfaces of specimen of Type N incline to spall at first from the 

regions of load application, as illustrated in Figure 4.18. 
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Figure 4.17 The stress-strain curves and failure modes of 75-mm-diameter slate specimens under different loading directions: (a) β =0°; (b) β =15°; 

(c) β =30°; (d) β =45°; (e) β =60°; (f) β =75°; (g) β =90° and (h) Type N. The No. 2 transverse strain is measured with the horizontal strain gage 

of the strain rosette glued at the center of specimen in one of its faces as shown in Figure 4.6b. The No. 4 to No. 8 transverse strains are measured 

with a series of horizontal strain gages glued along the diameter of specimen in the opposite face. 
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Figure 4.17 (continued)

(e) (f) 
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Further, the transverse strain (No. 2) measured by the strain rosette with a length of 3 mm 

is also drawn in the figure to make a comparison. Except under β =30° or 60°, the 

transverse strain at the center of specimen measured by the strain gage with a length larger 

than 10% of the diameter of the specimen underestimates the measured strain with respect 

to the strain gage of smaller length. This result is opposite to that observed in Dionysos 

marble by Exadaktylos and Kaklis (2001). Nonetheless, both results support the 

recommendation given by Chen et al. (1998) that the gage length should not exceed 10% 

of the diameter of specimen. In contrast, under β =30° or 60°, the transverse strains at the 

center of the disc measured by strain gages of different length are comparable. The reason 

behind this is that fractures do not pass through the disc center in the two cases and thus 

strains in the regions close to the center have little change. 

 

Figure 4.18 The surfaces of slate specimen of Type N close to the regions of load 

application incline to spall at first. 

4.5 Summary 

Slate, as a transversely isotropic rock, was employed to investigate the size-effect and 

anisotropy on its deformation, tensile strength and fracture pattern in this chapter. Disc 

slate samples of six sizes of 25-100 mm were cored parallel to (Type P) and normal to 

(Type N) the foliation planes. A series of Brazilian tests were performed on the disc 

samples with loading-foliation angles of 0°, 15°, 30°, 45°, 60°, 75° and 90°. The main 
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conclusions are summarised as follows: 

(1) Five independent elastic constants of the slate were determined by combining 

Brazilian test and FLAC3D simulation. The Young’s modulus ( E  ) in the 

transversely isotropic plane presents an increasing trend with specimen diameter, 

while the Young’s modulus ( E ) and shear modulus (G ) perpendicular to the 

transversely isotropic plane exhibit a reverse size effect. The Poisson’s ratios 

parallel to ( ) and normal to (  ) the transversely isotropic plane do not show an 

evident size effect. Moreover, the difference between G   obtained from the 

experiment and the Saint Venant’s empirical equation decreases with the specimen 

diameter, which may arise from the increased brittleness with increasing specimen 

diameter. Size effects on these elastic properties of the slate can be attributed to 

the combined influence of foliation planes and near-surface damage during 

sample preparation. 

(2) The principal tension at the disc center considering the elastic anisotropy is 

recommended as the indirect tensile strength of the slate. The tensile strength 

variation of slate with loading direction presents an increasing systematically 

trend (trend III). The N-Z criterion well captures the anisotropy of tensile strength 

of the slate in different sample sizes. 

(3) At loading-foliation angles of 0°-45°, the tensile strength of slate presents a typical 

descending size-effect. In contrast, at loading-foliation angles of 60°-90°, the 

tensile strength of slate presents a first ascending and then descending size-effect. 

The transition of size-effect trends is closely related to the failure mechanism 

under different loading directions. The degree of descending size-effect on tensile 

strength increases largely with loading-foliation angle, reaching the strongest 

when the loading-foliation angle is 90°. 

(4) A unified size-effect relation including two equations is first proposed and verified 

against the experimental data. The size-effect relation captures both the ascending 

and descending size-effect trends, and reveals the relationship among the tensile 

strength, specimen size and anisotropic angle. In future, more research into this 

issue should be done to demonstrate the capability of the proposed unified size-

effect law for other transversely isotropic rocks. 

(5) Under different loading-foliation angles, there exist three types of failure patterns 

being presented: layer activation failure (type I), mixed failure (type II), and non-
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layer activation failure (type III). As the loading-foliation angle increases, the 

failure pattern of slate specimen transforms from type I to type III. In general, the 

tensile strength of specimen failed by type III is the highest, and that by type II is 

secondary and that by type I is the lowest. With the specimen size increasing, the 

fracture pattern of specimen at the loading-foliation angle of 0° or 90° does not 

vary, but at other loading-foliation angles the percentage of fracture type with a 

higher strength increases first and then decreases. 

(6) The maximum transverse strain of slate under the Brazilian test shows a 

descending size-effect. It implies that the slate specimen exhibits an increased 

brittle failure with the specimen size increasing, at the transverse strain less than 

500 με. The transverse strains also present an anisotropic variation with the 

loading-foliation angle, and those measured approximated to the regions of load 

application are nonsymmetrical. Furthermore, the measured transverse strains 

along the loaded diameter can estimate the fracture initiation point. The specimen 

at β of 0° or 15° tends to fail starting from the disc center, while at other loading-

foliation angles the specimen tends to fail starting from the regions of load 

application. 
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CHAPTER 5 SIZE EFFECT AND ANISOTROPY IN A 

TRANSVERSELY ISOTROPIC ROCK UNDER 

COMPRESSIVE CONDITIONS 

5.1 Introduction 

Size effect is an important characteristic in brittle and semi-brittle materials, e.g., rock 

and concrete (Aubertin et al. 2000; Masoumi et al. 2016), and the term refers to the 

influence of sample size on measured mechanical properties (Masoumi 2013). Recently, 

considering the descending size-effect trend and the strength anisotropy, a universal 

equation describing the relationship among anisotropic angle, sample size and UCS was 

put forward by (Song et al. 2018) for coal, which can be modelled as an orthotropic 

material (Amadei 1996). This equation may be extended for transversely isotropic rocks, 

such as slate, shale, phyllite, schist, gneiss, siltstone, mudstone, sandstone and 

orthoquartzite. Furthermore, it is found in Chapter 4 that the indirect tensile strength of 

slate is closely related to the loading-foliation angle and specimen size, which displays a 

descending size-effect trend when the loading-foliation angle is low to medium (0°-45°), 

whereas it presents, first, an ascending and then descending size-effect trend when the 

loading-foliation angle is high (60°-90°). Finally, a unified size-effect relation including 

two equations was proposed and verified against the experimental data to capture the 

ascending and descending size-effect trends and the relationship among indirect tensile 

strength, specimen size and loading-foliation angle. However, to date, there has been no 

study involving size effect in transversely isotropic rocks under triaxial conditions. 

In this chapter, a suite of uniaxial compression tests were conducted on slate samples with 

six different diameters (19 to 75 mm) and varied foliation orientations relative to the 

loading direction (0°, 15°, 30°, 45°, 60° and 90°) to explore the influence of specimen 
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size and anisotropy on the elastic constants and UCS. A series of triaxial compression 

tests were also performed on slate samples with diameters of 25, 50 and 75 mm and 

various foliation orientations with respect to the direction of major principal stress (0°, 

15°, 30°, 45°, 60° and 90°) under a range of confining pressures between 1 and 20 MPa. 

The modified Hoek-Brown (Saroglou and Tsiambaos 2008) and Saeidi failure criteria 

(Saeidi et al. 2014) were improved in order to incorporate the size effect on both UCS 

and triaxial compressive strength (TCS), resulting in two size-dependent failure criteria. 

Additionally, a cohesion loss model (Peng and Cai 2019) was modified to capture the 

anisotropic triaxial residual strength of slate, and two equations providing the upper and 

lower bounds of the ratio of residual to peak strength were proposed for transversely 

isotropic rocks. 

5.2 Determination of elastic constants under uniaxial compression 
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Figure 5.1 The cylindrical geometry of a transversely isotropic material under 

compression. 

As seen from Figure 5.1, the cylinder of a transversely isotropic material under 

compression has a height of H and a diameter of d. The global co-ordinate system (x, y, 
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z) is rotated counter-clockwise with an angle of ( 2 ) −   relative to the local co-

ordinate system (x’, y’, z’).   is the orientation of foliation with respect to the direction 

of the major principal stress. The local system is affiliated to the plane of transversely 

isotropy, with the x’-axis and the y’-axis parallel to and normal to the plane of transverse 

isotropy, respectively, and the z’-axis coinciding with the z-axis. According to the 

generalized Hooke’s Law, the constitutive model of transversely isotropic media is 

expressed in global co-ordinates as follows: 
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  (5.1) 

After postulating the medium in the direction along the transversely isotropic plane to be 

linearly elastic, homogeneous and continuous, Amadei (2012) deduced the expressions 

of
ija  . The three components of 

ija   utilised in uniaxial compressive conditions to 

determine the five independent elastic constants for transversely isotropic rocks are 

provided as follows: 
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  (5.2) 

where E   and E   denote the elastic moduli parallel to and perpendicular to the 

transversely isotropic plane, respectively;   and     represent the Poisson’s ratios 

parallel to and normal to the transversely isotropic plane, respectively; and G  is the 

shear modulus in the direction normal to the transversely isotropic plane. 



Chapter 5 

100 

1
2

34
1

2
34 1

2

34

x

y

z

 

                        (a)                  (b)                  (c) 

Figure 5.2 The biaxial strain gages glued on the specimens in uniaxial compression tests 

with: (a) β =0°; (b) 0°<β<90° and (c) β =90°.  

The most frequently-used method for determining the five elastic constants for 

transversely isotropic rocks under uniaxial compression tests was presented by Amadei 

(1996) and Cho et al. (2012). In this method, at least two specimens (e.g., prismatic, 

cylindrical) with different foliation orientations (β) are required, provided that one of 

them is inclined relative to the isotropic plane (0°<β<90°). Figure 5.2 shows the 

arrangement of biaxial strain gages for specimens with three different foliation 

orientations. For each specimen, the two biaxial strain gages are mounted at the middle 

of the specimen with axial gauges (No. 1 and 2) parallel to the cylinder axis (y-axis). 

Circumferential gauges are glued diametrically perpendicular to axial gauges with each 

position either in the direction of the dip (No. 3) or the strike (No. 4) of foliation. 

Substituting the observed stress and strain data from testing into Eq. (5.1), the obtained 

equations can be summarised into a matrix only containing unknowns E , E ,  ,    

and G . After that, the five elastic constants are determined through the method of least 

squares. Despite the fact, in theory, that a minimum of five independent strain 

measurements is sufficient for the determination of elastic constants for transversely 

isotropic rocks, the results of Cho et al. showed that more strain measurements can 

improve the prediction accuracy (Cho et al. 2012). 
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5.3 Material and methods 

5.3.1 Sample preparation 

The slate samples, from five blocks collected at the same location in a slate quarry, with 

different diameters of 19, 25, 38, 50, 63 and 75 mm, were cored at various directions with 

respect to the foliation plane of 0°, 15°, 30°, 45°, 60° and 90°, as illustrated in Figure 5.3a. 

All of the samples, part of which are shown in Figure 5.3b, were prepared as per the 

International Society for Rock Mechanics (ISRM)-suggested method (ISRM 2007). The 

length-to-diameter ratio of each specimen was fixed at 2:1. A difficult part of the 

experimentation lies in obtaining good-quality cores with the required length due to the 

low success rate, particularly for the foliation-normal cores, which are easy to disk off 

during coring. Moreover, because of the ambiguity and waviness of foliation planes, the 

actual foliation orientation may deviate within a range of two to three degrees relative to 

the specified value of foliation orientation. For this experiment, homogeneous samples 

were carefully selected, having a relatively uniform composition and no macro defects 

visible to the unaided eye. It is worth pointing out that anisotropic materials can be 

homogenous, which should not be confused with heterogeneity (Simpson 2013). The 

slate rock used in this experiment has a well-developed slaty structure and a very fine 

grain size of 0.01-0.05 mm, and detailed information concerning the petrography and 

microstructure of which can be found in Chapter 4. 

90° 60°

45°

30°

15°

0°

foliation planes
 

Figure 5.3 Preparation of specimens with different diameters and foliation orientations: 

(a) coring of specimens with different orientations; (b) part of specimens in each size used 

in the compression test. 

(b) (a) 
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5.3.2 Testing procedure 

The laboratory apparatuses for uniaxial and triaxial compression tests are shown in Figure 

5.4. Uniaxial compression tests were performed on slate samples with diameters of 19, 

25, 38, 50, 63 and 75 mm and loading-foliation angles (β) of 0°, 15°, 30°, 45°, 60° and 

90°. To ensure accuracy, a compression machine with a low loading capacity of 100 kN 

(see Figure 5.4a) was utilised for slate samples with small diameters (19 and 25 mm). As 

for the samples with larger diameters (38, 50, 63 and 75 mm), a stiff testing machine with 

3 MN loading capacity was employed (see Figure 5.4b). The loading rates for uniaxial 

compression tests were set identically to be 0.5 MPa/s as the ISRM suggests (ISRM 2007). 

For each specimen, two biaxial strain gages with a length of 5 mm were used, the 

arrangements of which are shown in Figure 5.2. Throughout the test, the load and strain 

were simultaneously recorded via a Kyowa datalogger.  

  

Figure 5.4 The testing equipments for: (a) uniaxial compression tests on 19- and 25-mm-

diameter samples and (b) on 38-, 50-, 63- and 75-mm-diameter samples, (c) triaxial 

compression tests on 25-, 50- and 75-mm-diameter samples. 

In addition, triaxial tests were conducted on slate samples with diameters of 25, 50 and 

75 mm and foliation orientations relative to the major principal stress (β) of 0°, 15°, 30°, 

45°, 60° and 90° using a servo-controlled loading frame system of 2 MN capacity and a 

triaxial cell capable of generating up to 100 MPa confining pressures (see Figure 5.4c). 

Three sets of platens incorporating spherical seats of 25, 50, and 75 mm in diameter came 

with the triaxial cell. Moreover, to adapt for the different diameters of the tested samples, 

(a) (b) (c) 
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three sets of extensometers with different sizes were adopted, each of which included an 

axial extensometer and a circumferential extensometer with measuring ranges of 10 and 

5 mm, respectively. The triaxial compression test was performed according to the 

individual test suggested by Kovari et al. (1983), in which the individual point on the 

peak or residual strength envelope is obtained from one test. The loading rates of 

confining pressure and axial stress were controlled at 0.05 and 0.5 MPa/s, respectively, 

as suggested by the ISRM (2007). In this study, the slate samples were tested with 

confining pressures ranging from 1 to 20 MPa. 

5.4 Results and discussion  

5.4.1 Elastic property 
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Figure 5.5 Typical stress-strain curves of slate specimens under uniaxial compression 

tests: (a) β =0°; (b) β =45° and (c) β =90° 

As an illustrative example, the typical stress-strain curves of slate samples in uniaxial 

compression tests are shown Figure 5.5. The stress-strain curves No. 1 to 4 correspond to 

(a) (b) 

(c) 
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the measured strains at different mounting positions as displayed in Figure 5.2. The results 

show that axial strains obtained at positions No. 1 and 2 are comparable irrespective of β, 

while the difference in circumferential strains obtained between the directions of dip and 

strike (No. 3 and 4) is greatly dependent on β. This demonstrates the existence of elastic 

anisotropy in slate. The 
x y  , 

y y   and 
z y   used in section 5.2.1 to determine 

the values of E  , E  ,   ,     and G   correspond to the secant values at 50% peak 

stress as represented by the green lines in Figure 5.5. 

5.4.1.1 Five elastic constants for the transversely isotropic rock 

Table 5.1 The five elastic constants determined on the slate with different specimen 

diameters using uniaxial compression tests. 

Diameter 

(mm) 

Number of 

gages 

E  

(GPa) 

E  

(GPa) 
     

G  

(GPa) 
w 

19 48 58.86 49.29 0.16 0.20 19.01 2.2 

25 68 71.58 34.39 0.20 0.16 15.41 2.7 

38 48 72.26 25.08 0.21 0.17 17.32 2.7 

50 56 71.53 36.40 0.19 0.15 11.82 3.0 

63 44 81.43 37.60 0.19 0.18 13.62 3.0 

75 52 86.73 33.47 0.17 0.19 18.01 2.8 

The five elastic constants determined on slate samples with different sizes in uniaxial 

compression conditions are listed in Table 5.1, and each group of results were calculated 

from the corresponding number of strain gage readings, collected from samples with 

different foliation orientations, using the method of least squares. Taking all of the five 

elastic constants into consideration, Kwasniewski (1983) proposed an anisotropy 

classification for transversely isotropic materials as follows: 
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According to the anisotropy classification, the slate samples of 19 mm in diameter and of 

25 to 75 mm in diameter are classified as the low anisotropic rock ( 2.1 2.5n  ) and the 

medium anisotropic rock ( 2.5 3.0n  ), respectively. 
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Figure 5.6 Variations of five elastic constants with specimen size, and comparisons 

between results obtained from uniaxial compression and Brazilian tensile tests in Chapter 

4: (a) E, E’, G’ and (b) v, v’. The solid and dashed lines represent the results obtained 

from uniaxial compression and Brazilian tensile tests, respectively. 

Figure 5.6 shows variations of the five elastic constants with the specimen size, as well 

as comparisons between results obtained from uniaxial compression and Brazilian tensile 

tests. The Young’s modulus parallel to the isotropic plane generally increases, while the 

Young’s modulus perpendicular to the plane of isotropy first decreases and then fluctuates 

(a) 

(b) 
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with the specimen size. Both the shear modulus normal to the foliation plane and 

Poisson’s ratios parallel to and perpendicular to the foliation plane vary little throughout 

the specimen size range. As analysed in Chapter 4, the combined influence of foliation 

plane and near-surface damage during sample preparation determines the size effect on 

the elastic properties in slate.   
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Figure 5.7 Variation of apparent Young’s modulus ( E ) and theoretical results from the 

transversely isotropic solution: (a) d=19mm; (b) d=25mm; (c) d=38mm; (d) d=50mm; (e) 

d=63mm and (f) d=75mm. 

(a) (b) 

(c) (d) 

(e) (f) 



Chapter 5 

107 

Thus, the outcome of the combined influence for slate in uniaxial compressive conditions 

is that only the Young’s modulus parallel to the isotropic plane presents an increasing 

size-effect trend, and other elastic constants do not display an evident size-effect trend. 

Additionally, with the exception of the Young’s modulus parallel to the plane of isotropy, 

all of the elastic constants obtained by Brazilian tensile tests are higher than those 

obtained by uniaxial compression tests, regardless of the specimen size. This discrepancy 

could be attributed to the difference in loading conditions, since rocks have different 

deformability properties when loaded in tension or compression (Amadei 1996). Further 

research is needed on this issue, which is outside of the scope of this study. 

5.4.1.2 Apparent elastic moduli 

In uniaxial compressive condition, the theoretical predications of apparent elastic 

modulus ( E ) can be calculated as 221 a  in the form: 
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The apparent elastic moduli for slate samples with different diameters obtained from this 

experiment are shown in Figure 5.7 with the theoretically predicted results based on the 

transversely isotropic solution. In general, the apparent elastic modulus decreases 

gradually, with the foliation orientation relative to the loading direction increasing. In the 

case of slate samples of 19 mm in diameter, the variation of the apparent elastic modulus 

with β is less obvious, consistent with the results of anisotropy classification. Furthermore, 

in order to demonstrate the applicability of the transversely isotropic model to slate, an 

assessment indicator called mean prediction error (MPE) is utilised to compare the 

measured with the predicted apparent elastic moduli (Cho et al. 2012; Min and Jing 

2003), according to 
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where ( )i exy  and ( )i thy  are the experimental and theoretical values, respectively; and N  
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represents the number of data points. The calculated MPEs of E  for slate samples with 

diameters of 19, 25, 38, 50, 63 and 75 mm are 22%, 16%, 22%, 17%, 22% and 13%, 

respectively. They are within an acceptable range, so the transversely isotropic model is 

moderately applicable to slate irrespective of specimen size. Therefore, the apparent 

elastic modulus of slate at any foliation orientation can be estimated using the transversely 

isotropic solution once relevant elastic constants are determined. 

5.4.2 Uniaxial compressive strength 

Table 5.2 Uniaxial and triaxial compression test results of slate specimens with different 

sizes and loading directions (part 1). 

Diameter 

(mm) 

β =0° β =15° β =30° 

3

(MPa) 
1 (MPa) 

SD 

(MPa) 

3

(MPa) 
1 (MPa) 

SD 

(MPa) 

3

(MPa) 
1 (MPa) 

SD 

(MPa) 

19 0 142.58 11.40 0 129.29 19.18 0 108.83 7.29 

25 

0 129.53 2.92 0 115.59 12.59 0 96.07 11.79 

1 142.06 18.55 1 125.67 － 1 110.15 22.38 

5 176.75 2.39 5 170.60 3.06 5 135.89 49.27 

10 226.33 12.39 10 203.58 7.20 10 170.67 － 

20 273.19 － 20 232.91 9.42 20 215.67 1.31 

38 0 124.31 6.70 0 99.55 10.12 0 86.62 27.99 

50 

0 115.25 0.75 0 95.91 7.45 0 78.77 7.31 

1 132.31 17.44 1 93.88 15.32 1 91.82 3.67 

5 172.88 45.31 5 131.12 0.63 5 109.68 4.35 

10 199.92 20.98 10 137.74 1.11 10 120.29 2.27 

20 253.09 6.14 20 175.15 2.69 20 164.86 21.74 

63 0 102.16 7.03 0 89.52 1.50 0 69.72 10.44 

75 

0 97.29 22.15 0 87.59 14.34 0 73.72 19.59 

1 122.25 0.90 1 95.32 14.68 1 68.93 0.36 

5 160.37 13.67 5 106.25 9.21 5 88.16 20.04 

10 174.85 1.02 10 130.06 － 10 101.53 3.58 

20 249.85 － 20 161.89 － 20 136.53 － 

 

Table 5.2 Uniaxial and triaxial compression test results of slate specimens with different 
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sizes and loading directions (part 2). 

Diameter 

(mm) 

β =45° β =60° β =90° 

3

(MPa) 
1 (MPa) 

SD 

(MPa) 

3

(MPa) 
1 (MPa) 

SD 

(MPa) 

3

(MPa) 
1 (MPa) 

SD 

(MPa) 

19 0 117.12 6.33 0 159.29 11.39 0 190.46 7.66 

25 

0 107.01 7.00 0 147.74 33.61 0 169.14 10.64 

1 121.07 7.41 1 159.06 － 1 176.32 10.69 

5 150.73 7.89 5 167.56 16.36 5 220.80 1.75 

10 169.37 2.80 10 198.69 16.91 10 240.16 6.67 

20 211.13 37.74 20 251.38 － 20 285.91 － 

38 0 99.60 12.51 0 133.01 6.66 0 166.71 16.61 

50 

0 82.51 3.31 0 121.92 6.78 0 157.17 7.40 

1 97.13 3.26 1 130.87 7.63 1 171.74 2.69 

5 113.76 2.31 5 164.94 3.95 5 207.01 0.16 

10 128.21 22.12 10 189.19 0.21 10 231.60 3.69 

20 155.26 8.96 20 216.28 6.17 20 255.96 2.69 

63 0 76.21 28.43 0 115.31 14.34 0 148.38 9.05 

75 

0 82.21 1.39 0 110.84 27.30 0 146.72 0.21 

1 80.94 0.88 1 111.65 18.48 1 167.10 － 

5 100.23 0.07 5 126.21 14.61 5 168.97 － 

10 100.83 2.19 10 156.10 1.04 10 203.64 － 

20 125.51 0.19 20 184.79 － 20 255.59 － 

In order to minimize the influence of heterogeneity, several experiments were carried out 

on slate samples with each prescribed specimen size and foliation orientation. The mean 

values of UCS are summarised in Table 5.2 and depicted in Figure 5.9. Based on the 

experimental results, size effect and anisotropy in the UCS of slate are investigated in this 

section. 

5.4.2.1 Size effect on UCS 

Similar to the size effect on tensile strength discussed in Chapter 4 and referring to the 

experimental results as shown in Figure 5.9, three principles defining the size effect on 

the UCS of slate should also be followed:  
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(1) The relationship between UCS and specimen size depends on the mechanical 

properties of the material. 

(2) The variation of UCS with the specimen size shows a descending trend and is 

closely correlated with the foliation orientation. 

(3) For specimens of a prescribed shape, UCS has upper and lower boundaries, with 

the specimen size varying. 
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Figure 5.8 Comparison between fitting results of Eqs. (5.6) and (5.7). 

As stated in the introduction, classical size-effect models are derived from isotropic 

materials, but they can be important references for exploring the size-effect model 

applicable to transversely isotropic materials. Based on the principle (2), the descending 

size-effect type, including statistical, size-effect law (SEL) and multifractal scaling law 

(MFSL) models, is considered. Nevertheless, the MFSL model is not able to describe the 

strength of an infinitesimal sample which is infinite as the sample size approaches zero 

(Masoumi et al. 2015), violating the principle (3). At this point, introducing both upper 

and lower boundaries, a transformation of the SEL model expressed as Eq. (5.6) and a 

statistical model proposed by (Song et al. 2018) expressed as Eq. (5.7) are compared, 

fitting the experimental results as displayed in Figure 5.8. Both equations agree with the 

experimental data well (R2 > 0.98), but the SEL model does not have a reasonable physical 
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meaning for the strength of an infinitesimal sample that is at least one order of magnitude 

larger than the actual value. Thus, the statistical model is adopted. 

 0

0

( )

1

M
d M

d

d

 
 



−
= +

+

  (5.6) 

 
0( ) kd

d M M e    −= + −   (5.7) 

where d   represents the UCS of the specimen with a diameter of d  ; 0   and M  

denote the UCS when 0d →  and d →  , respectively;   and 0d  are same as those 

in Eq. (2.1); and k  is a parameter related to the mechanical properties of the material. 
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Figure 5.9 Size effects on UCS of slate specimens under different loading-foliation angles. 

Figure 5.9 shows variations of the UCS of slate samples with the specimen size as well 

as fitted results based on Eq. (5.7) under every loading direction. The fitting parameters 

0 , M  and k  of Eq. (5.7) are listed in Table 5.3. The fitted curves in Figure 5.9 are in 

agreement with the experimental data with coefficients of determination > 0.92, 

demonstrating that the UCS of slate follows the descending size-effect trend. The 

descending size-effect trend is similar to that observed in most isotropic rocks 

(Darlington et al. 2011; Hoek and Brown 1980), but the severity of size effect on the 

UCS of slate changes with the loading-foliation angle. To quantify the influence of 
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anisotropy on the size effect, the derivative of Eq. (5.7) is utilised in the form 

 
0( ) kd

d M ke   − = − −   (5.8) 

Thus, the severity of size effect is proportional to the magnitude of 0( )M −  since k  

is positive for the descending size-effect trend. Overall, the influence of size effect is 

reduced as the specimen size increases. Referring to values of 0 , M  and k  as listed 

in Table 5.3, it is inferred that the strongest and weakest size effects occur at β = 60° and 

β = 30°, respectively. 

Furthermore, for a specified loading direction, 0   and M   predicted by Eq. (5.7) 

correspond to the maximum and minimum UCS, respectively, throughout the range of 

specimen sizes. The estimated UCS of slate ranges between 66.79 and 237.73 MPa, 

regardless of specimen size and loading direction. 

Table 5.3 Fitting parameters in Eq. (5.7) for UCS of slate specimens with different sizes 

loaded under different loading-foliation angles.  

β (°) 0 15 30 45 60 90 

0  (MPa) 197.32 180.30 155.16 169.28 222.37 237.73 

M  (MPa) 97.18 81.95 66.79 73.75 106.70 142.88 

0 M −  (MPa) 100.14 98.35 88.37 95.53 115.67 94.85 

k  0.041 

2R  0.929 0.985 0.971 0.935 0.997 0.925 

5.4.2.2 Anisotropy of UCS 

The experimental data on UCS for specimen diameters of 19, 25, 38, 50, 63 and 75 mm 

and the predicted data for specimen sizes approaching both 0 and    versus loading-

foliation angle are plotted in Figure 5.10, presenting the U-type, different from the 

undulatory-type and shoulder-type as classified by Ramamurthy (1993). For groups with 

various sample sizes, the maxima of UCS are located at β = 90°, and the minima of UCS 

occur at β = 30° close to (45°-φ), where φ is the friction angle along the foliation plane. 
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Figure 5.10 Anisotropy in UCS of slate samples with different size. 

Numerous approaches have been proposed to describe the relationship between 

compressive strength and loading direction for transversely isotropic rocks as reviewed 

in Duveau et al. (1998) and Pei (2008). Among these methods, the empirical equation 

developed initially by Jaeger (1960) and improved by Donath (1961) is used most 

commonly in uniaxial compression conditions. The equation is in the form 

 
mincos2( )A D  = − −   (5.9) 

where   is the UCS at the loading-foliation angle of  ; min  corresponds to the angle 

at which UCS is minimum; A  and D  are two constants. Fitting curves and parameters 

of both experimental and predicted UCS based on Eq. (5.9) are plotted in Figure 5.10 and 

summarised in Table 5.4, respectively. Fitting curves agree reasonably well with both the 

experimental and predicted data. The determined min   fluctuates between 27.7° and 

31.3°, with an average angle of 29.2°. The fitting parameter A decreases, while D  varies 

little with the specimen size. It is demonstrated that parameter A  is correlated to the size 

effect. The strength anisotropy is usually represented by the following equation 

(Ramamurthy 1993): 

 
(90)

(min)

c

c

c

R



=   (5.10) 
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where cR  is the degree of anisotropy; 
(90)c  is the UCS at β = 90°; and 

(min)c  is the 

minimum UCS commonly at β = 30－45°. The values of cR   at specimen diameters 

approaching 0, equal to 19, 25, 38, 50, 63, 75 mm, and approaching infinite are 1.53, 1.75, 

1.76, 1.92, 2.00, 2.13, 1.99 and 2.14, respectively. In general, the degree of strength 

anisotropy in slate increases with the specimen size, and then stabilizes for samples larger 

than a critical size. The critical specimen diameter is 63 mm for slate in this analysis. 

Table 5.4 Parameters in Eq. (5.9) when the diameter of slate specimen is different. 

Diameter 

(mm) 
0d →   19 25 38 50 63 75 d →   

min  (°) 27.7 28.9 28.1 29.2 31.3 29.7 27.7 29.6 

A 219.37 168.41 150.83 145.46 137.46 127.15 123.35 121.18 

D 48.91 50.97 44.18 50.82 53.00 50.14 44.96 49.01 

2R  0.790 0.907 0.864 0.937 0.930 0.920 0.967 0.955 

5.4.2.3 Universal equation for size-effect and anisotropy of UCS 

Combining Eqs. (5.7) and (5.9), Song et al. (2018) proposed a unified empirical equation 

describing both the size effect and anisotropy of UCS expressed as  

 min 0 0 mincos 2( ) ( ) ( )cos 2( ) kd

c d M M M MA D A A D D e     −= − − + − − − −   (5.11) 

where 
c d  is the UCS of specimen with the diameter of d at the loading-foliation angle 

of β; 0A  and 0D , MA  and MD  are A and D constants for specimen size approaching 

zero or infinite, respectively; k  is a characteristic parameter related to the material as 

mentions in Eq. (5.7); min  is the average of   at which UCS is minimum.  

The fitted equation by Eq. (5.11) is as follow: 

  0.041

2

120.84 48.58cos 2( 29.2) (220.64-120.84)-(50.41-48.58)cos 2( 29.2) ,

0.933

d

c d e

R

   −= − − + −

=

 (5.12) 
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Figure 5.11 Comparison between experimental data and a theoretical surface obtained by 

Eq. (5.12) for specimens of different diameters at various loading directions. 

The experimental data and the fitted surface obtained by Eq. (5.12) for specimens of 

different diameters at various loading directions are compared as shown in Figure 5.11. 

The theoretical surface is in agreement with the experimental data with a high reliability 

(R2 = 0.933). It demonstrates the applicability of the universal equation to slate, a 

transversely isotropic rock. Consequently, the universal equation proposed by Song et al. 

(2018) is recommended for describing the relationship among UCS, specimen size and 

loading direction for the transversely isotropic rock. It is also a basic step for the further 

study of the size effect of transversely isotropic rocks in triaxial conditions. 

5.4.3 Triaxial compressive strength 

The triaxial compressive strength (TCS), corresponding to the peak axial stresses in 

stress-strain curves, is extracted from this experiment. The mean values of the TCS of 

slate samples with diameters of 25, 50 and 75 mm at different confining pressures and 

foliation orientations relative to the maximum principal stress are summarised in Table 

5.2 and depicted in Figure 5.12. 
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5.4.3.1 Size effect on TCS 
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Figure 5.12 Compressive strength versus sample diameter and fitted curves based on Eq. 

(5.10) at different confining pressures: (a) β =0°; (b) β =15°; (c) β =30°; (d) β =45°; (e) β 

=60° and (f) β =90°. 

As seen in Figure 5.12, variations of both UCS and TCS with the specimen size present 

a similar trend in line with the observed results in gypsum (Hunt 1973) and sandstone 

(Masoumi et al. 2016). Hence, the descending size-effect model applicable to the UCS 

(a) (b) 

(c) (d) 

(e) (f) 
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was also utilised to fit the experimental data of TCS. The fitted curves of TCS based on 

Eq. (5.7) are plotted in Figure 5.12, and fitted parameters are obtained as listed in Table 

5.5 with k  being a constant of 0.041.  

Table 5.5 Comparison of values of 0( )M −   at different confining pressures and 

foliation orientations. 

β (°) 0 15 

3   0 1 5 10 20 0 1 5 10 20 

0   197.3 180.6 206.8 326.9 322.3 180.3 192.1 299.1 359.5 381.0 

M   97.2 121.7 162.0 173.0 244.9 81.9 86.1 100.7 113.3 148.6 

0 M −   100.1 58.9 44.8 153.9 77.4 98.4 106.0 198.4 246.2 232.4 

β (°) 30 45 

3   0 1 5 10 20 0 1 5 10 20 

0   155.2 189.5 229.9 312.3 374.8 169.3 200.9 254.2 305.9 383.6 

M   66.8 68.8 85.6 91.6 128.6 73.8 77.8 92.9 95.4 116.4 

0 M −   88.4 120.7 144.3 220.7 246.2 95.5 123.1 161.3 210.5 267.2 

β (°) 60 90 

3   0 1 5 10 20 0 1 5 10 20 

0   222.4 253.4 240.2 276.5 381.9 237.7 194.3 316.5 307.1 351.4 

M   106.7 108.0 134.0 160.7 181.9 142.9 166.8 173.5 207.4 247.3 

0 M −   115.7 145.4 106.2 115.8 200.0 94.8 27.5 143.0 99.7 104.1 

Furthermore, Eq. (5.8) was employed to quantify the severity of size effect on TCS at 

different foliation angles and confining pressures. As discussed in section 5.4.2.1, the 

severity of size effect is proportional to the magnitude of 0( )M − . Based on the values 

of 0( )M −   in Table 5.5, the influence of confining pressures on the size effect of 

compressive strength is weak when β = 0°, 60° and 90°, whereas it is strong when β is in 

the range of 15° to 45°, as also presented in Figure 5.12. When β is located at 15° to 45°, 

the severity of the size effect on compressive strength increases with the confining 

pressure, which is contradictory to the viewpoint (Aubertin et al. 2000) that confining 

pressures suppress the size effect in rocks. Aubertin et al. (2000) thought that the change 
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from brittle to ductile behaviour and the closure of microcracks with increasing 

confinement diminish the size effect. This discrepancy may be attributed to the unique 

failure mode, viz., sliding failure along the foliations, observed in the slate at β of 15° to 

45° and confining pressures of 0 to 20 MPa. There exists a characteristic confining 

pressure above which size dependency starts to diminish as the confining pressure 

increases, because the failure mode at β of 15° to 45° is transformed to slide across the 

foliations, resulting in the change from brittle to ductile failure. 

For simplification, in this analysis, size effects on compressive strength at different 

confining pressures are assumed to be identical when the samples stay within the brittle 

regime. 

5.4.3.2 Anisotropy of TCS 
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Figure 5.13 Variation of UCS and triaxial compressive strength of slate with different 

specimen diameters versus β: (a) d=25mm, (b) d=50mm and (c) d=75mm. 

Variations in the triaxial compressive strength of slate samples with diameters of 25, 50 

and 75 mm at different confining pressures versus foliation orientations are displayed in 

Figure 5.13, and all the anisotropy curves are U-type. The maxima in anisotropy curves 

(a) (b) 

(c) 
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lie in β = 90°, but with increasing confining pressure, the maxima are inclined to shift to 

β = 0°. The minima of anisotropy curves are found to shift gradually from β = 30° to β = 

45° as the confining pressure increases. Additionally, anisotropy curves are fitted by Eq. 

(5.9) as shown in Figure 5.13, and the fitted results are summarised in Table 5.6. The 

results indicate that fitted curves based on Eq. (5.9) agree with the experimental data. The 

values of parameter A increase as confining pressures increase, while at the same time 

decreasing with increasing specimen size, and the values of parameter D increase with 

the confining pressure. It has also been observed that the range of TCS for β = 15°－45° 

at confining pressures between 0 and 20 MPa decreases as the specimen size increases, 

particularly for the case of β = 45°. The smaller effect of confining pressure for β = 15°

－45° can be attributed to the sliding failure along the foliation planes, which is consistent 

with the observed results in schist (Duveau et al. 1998). 

Table 5.6 Parameters in Eq. (5.9) when the slate specimen is loaded at different confining 

pressures. 

Confining pressures 

(MPa) 
0 1 5 10 20 

d = 25 mm 

min  (°) 28.1 27.6 34.7 40.7 38.5 

A 150.83 160.05 201.27 235.02 279.24 

D 44.18 40.01 55.66 60.55 61.38 

2R   0.864 0.852 0.930 0.933 0.890 

d = 50 mm 

min  (°) 31.33 31.06 34.59 34.33 39.02 

A 137.46 150.47 190.01 214.03 251.50 

D 53.00 56.73 72.31 83.36 86.31 

2R   0.930 0.940 0.899 0.855 0.809 

d = 75 mm 

min  (°) 27.7 34.1 38.6 36.9 40.7 

A 123.35 145.49 162.18 189.87 250.15 

D 44.96 68.24 66.67 81.38 116.30 

2R   0.967 0.970 0.886 0.900 0.907 

5.4.3.3 Size-dependent modified Hoek-Brown failure criterion 

As discussed in the previous section, the size dependencies on the UCS and TCS of slate 

are similar and are thus postulated to be identical for simplification. The size-effect 
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relation for UCS, Eq. (5.11), is incorporated into the modified Hoek-Brown criterion, Eq. 

(2.22), resulting in a size-dependent failure criterion that can comprehensively capture 

the relationship among the compressive strength, anisotropic orientation, specimen size 

and confining pressure in the form: 

  

  

1 3 min 0 0 min

0.53

min 0 0 min

cos 2( ) ( ) ( ) cos 2( )

       ( 1)
cos 2( ) ( ) ( ) cos 2( )

kd

M M M M

i kd

M M M M

A D A A D D e

k m
A D A A D D e


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
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−

−

= + − − + − − − −

 +
− − + − − − −

 

                                                                                (5.13) 

Table 5.7 Parameters in Eqs. (5.13) and (5.14) when the slate specimen is loaded at 

different confining pressures. 

β (°) 0 15 30 45 60 90 

Size-dependent 

modified H-B failure 

criterion 

k  1.91 1.09 0.76 0.57 1.14 1.00 

MPE 4.8% 7.9% 7.9% 7.4% 7.4% 4.1% 

2R  0.980 0.889 0.930 0.882 0.922 0.948 

Size-dependent 

Saeidi failure 

criterion 

   0.96 0.98 1.08 1.07 0.91 1.03 

P   13.73 20.99 11.82 22.82 9.11 16.73 

Q   3.74 9.98 4.96 13.93 3.44 8.23 

MPE 4.5% 5.8% 7.1% 6.6% 4.7% 3.8% 

2R  0.978 0.939 0.926 0.910 0.945 0.958 

Firstly, the values of the parameters in Eq. (5.11) were calibrated based on UCS data, and 

the resulting parameters for slate are shown in Eq. (5.12). The value of im   was then 

obtained by fitting the size-dependent modified Hoek-Brown criterion to the compressive 

strength data obtained at β = 90°, provided that k  is 1.0, and was further utilised to 

determine the values of k  at other anisotropic orientations. The resulting value of im  

is 10.78 for slate. Fitting parameters in Eq. (5.13) based on uniaxial and triaxial data are 

summarised in Table 5.7, and the predicted peak stresses versus specimen diameter and 

confining pressure at different loading directions are plotted as cyan surfaces in Figure 

5.14. The fitted value of k   decreases initially and then increases with the foliation 

orientation, reaching the maximum and minimum at β = 0° and β = 45°, respectively. 
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Figure 5.14 Comparison between applicability of proposed size-dependent failure criteria 

based on the modified Hoek-Brown criterion and the Saeidi criterion to the compressive 

strength obtained from slate samples with different sizes at different confining pressures 

and loading directions: (a) β =0°; (b) β =15°; (c) β =30°; (d) β =45°; (e) β =60° and (f) β 

=90°. The cyan surface represents the size-dependent modified Hoek-Brown failure 

criterion. The orange surface represents the size-dependent Saeidi failure criterion. 

(a) (b) 

(c) (d) 

(e) (f) 
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Fitted surfaces are in agreement with the experimental data with coefficients of 

determination larger than 0.88. The MPEs for the compressive strength of slate samples 

at different loading directions are lower than 10%, within an acceptable range for practical 

engineering applications. Consequently, the proposed size-dependent modified Hoek-

Brown failure criterion is capable of predicting the peak strength of slate under uniaxial 

and triaxial conditions regardless of specimen size, foliation orientation or confining 

pressure. However, inheriting from the basic failure criterion of Hoek–Brown, the size-

dependent failure criterion is limited to the brittle regime and neglects the influence of 

intermediate principal stress.  

5.4.3.4 Size-dependent Saeidi failure criterion 

Similar to the size-dependent modified Hoek-Brown failure criterion, the size-dependent 

Saeidi failure criterion is proposed by including size effect in the Saeidi failure criterion, 

Eq. (2.24). As a result, 
c  in the Saeidi failure criterion is substituted by Eq. (5.11) 

according to 

  
  

min 0 0 min 3

1 3

3 min 0 0 min
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                                                                                 (5.14) 

After the size-effect model for UCS is calibrated, the triaxial data are fitted by Eq. (5.14). 

The fitted surfaces are plotted as orange surfaces in Figure 5.14, and fitted parameters are 

listed in Table 5.7. Compared with fitted results based on Eq. (5.13), the data predicted 

by Eq. (5.14) agree better with the experimental data with higher R2 and lower MPEs. As 

seen from the theoretical surfaces in Figure 5.14, the size-dependent Saeidi failure 

criterion has fitted the experimental data points well, whereas the size-dependent 

modified Hoek-Brown failure criterion has overpredicted the strength at high confining 

pressures and underpredicted it at intermediate confining pressures at every loading 

direction. It has also overpredicted the strength at low confining pressures for β = 30°, 45° 

and 90°. However, the size-dependent Saeidi failure criterion needs more tests performed 

in order to determine the parameters in the expression relative to the size-dependent 

modified Hoek-Brown failure criterion. One common drawback of both of the proposed 

size-dependent failure criteria in this study is that they are incapable of estimating rock 
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strength in true-triaxial conditions. 

Table 5.8 Comparisons between the measured tensile strength by experiment in Chapter 

4 and the predicted one by size-dependent failure criteria. 

Diameter 

(mm) 

β =0° β =15° β =30° 

m

t

(MPa) 

1p

t

(MPa) 

2p

t

(MPa) 

m

t

(MPa) 

1p

t

(MPa) 

2p

t

(MPa) 

m

t

(MPa) 

1p

t

(MPa) 

2p

t

(MPa) 

25 19.60 6.34 9.07 17.50 9.55 5.27 10.19 12.94 8.59 

38 21.95 5.63 8.05 19.23 8.32 4.59 13.36 11.19 7.43 

50 20.15 5.24 7.49 13.33 7.65 4.22 12.50 10.22 6.79 

63 16.47 4.99 7.13 14.20 7.21 3.98 9.30 9.60 6.37 

75 12.45 4.85 6.92 11.53 6.96 3.84 9.30 9.25 6.14 

100 12.55 4.70 6.72 10.41 6.72 3.71 9.01 8.90 5.91 

Diameter 

(mm) 

β =45° β =60° β =90° 

m

t

(MPa) 

1p

t

(MPa) 

2p

t

(MPa) 

m

t

(MPa) 

1p

t

(MPa) 

2p

t

(MPa) 

m

t

(MPa) 

1p

t

(MPa) 

2p

t

(MPa) 

25 13.10 18.17 4.93 9.20 10.74 13.78 9.10 16.78 10.56 

38 12.20 15.86 4.30 8.98 9.56 12.27 8.66 15.41 9.69 

50 10.16 14.59 3.96 7.57 8.91 11.43 4.87 14.65 6.21 

63 8.69 13.76 3.73 5.34 8.48 10.88 6.61 14.16 8.90 

75 10.05 13.30 3.61 6.71 8.25 10.58 5.66 13.88 8.73 

100 5.95 12.84 3.48 4.84 8.01 10.28 3.32 13.61 8.56 

Additionally, in order to evaluate the applicability of the two size-dependent failure 

criteria for the estimation of the tensile strength of slate, comparisons between predicted 

and measured values are made, as listed in Table 5.8. 1p

t  and 2p

t  are the values of 

tensile strength predicted by the size-dependent modified Hoek-Brown and Saeidi failure 

criteria, respectively. The results indicate that the size-dependent modified Hoek-Brown 

failure criterion underestimates and overestimates the tensile strength when β is low (0° 

and 15°) and high (45°－90°), respectively, and agrees well with the tensile strength at β 

= 30°. Nevertheless, the size-dependent Saeidi failure criterion continuously 

underpredicts the tensile strength as β increases from 0° to 45°, while overpredicting the 

tensile strength for β = 60°－90°. Moreover, the tensile strength predicted by the two 

criteria always presents a descending size-effect trend, but the one observed in the 



Chapter 5 

124 

laboratory exhibits an initially increasing and then decreasing size-effect trend when the 

loading-foliation angle is high (60°-90°). Overall, the two proposed failure criteria are 

incapable of predicting rock strength in tensile conditions. 

5.4.4 Triaxial residual strength 

Since rocks around underground structures (e.g., tunnels, caverns and mining stopes) are 

still able to sustain certain levels of stress even after they reach the post-peak deformation 

phase, the residual strength is significant for the safe and optimum design of underground 

structures (Gao and Kang 2016; Peng and Cai 2019). The residual strength, r  , is 

usually defined as a constant level of stress under which the deformation of existing 

cracks continues after the peak strength. It can be determined through the flattening trend 

along the post-failure portion of the stress-strain curve (Tutluoğlu et al. 2015). Due to 

the extremely brittle nature of the tested slate under uniaxial compression, only the triaxial 

residual strength (TRS) of specimens with different sizes and foliation orientations was 

measured under different confining pressures as listed in Table 5.9.  

5.4.4.1 Size effect on triaxial residual strength 

To evaluate whether the residual strength of slate follows a size-effect trend or not, its 

variation with the specimen size in three cases of β = 0°, 45° and 90° is shown in Figure 

5.15. The observed finding is that the triaxial residual strength of slate does not present 

an evident size-effect trend irrespective of loading direction and confining pressure, 

different from the peak strength. It can be explained that a brittle or semi-brittle material, 

after broken, degrades into the ductile material with the size effect disappearing 

(Aubertin et al. 2000). 
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Table 5.9 Triaxial residual strength of slate specimens with different sizes and loading 

directions. 

Diameter 

(mm) 

β =0° β =15° β =30° 

3  

(MPa) 

r  

(MPa) 

SD 

(MPa) 

3  

(MPa) 

r  

(MPa) 

SD 

(MPa) 

3  

(MPa) 

r  

(MPa) 

SD 

(MPa) 

25 

1 29.81 0.59 1 23.10 － 1 26.69 3.92 

5 62.73 1.00 5 37.58 1.88 5 37.02 1.13 

10 86.28 1.26 10 75.52 8.39 10 49.74 － 

20 137.65 － 20 126.55 3.72 20 119.99 7.07 

50 

1 25.36 1.70 1 20.57 2.93 1 23.44 3.46 

5 68.90 － 5 42.12 0.41 5 66.15 － 

10 87.54 － 10 60.31 0.05 10 83.45 2.95 

20 138.92 0.06 20 106.02 3.42 20 88.56 1.27 

75 

1 24.03 1.93 1 19.92 4.07 1 17.01 2.50 

5 60.34 3.97 5 38.20 7.24 5 34.19 1.98 

10 83.44 4.99 10 58.48 0.55 10 50.17 4.13 

20 128.03 － 20 101.91  20 87.33 － 

Diameter 

(mm) 

β =45° β =60° β =90° 

3  

(MPa) 

r  

(MPa) 

SD 

(MPa) 

3  

(MPa) 

r  

(MPa) 

SD 

(MPa) 

3  

(MPa) 

r  

(MPa) 

SD 

(MPa) 

25 

1 28.58 2.35 1 20.84 － 1 14.01 1.63 

5 38.05 5.17 5 50.68 － 5 39.60 2.00 

10 64.55 6.24 10 76.85 3.78 10 65.87 1.12 

20 111.59 － 20 113.55 － 20 122.84 － 

50 

1 19.84 0.74 1 19.73 0.25 1 13.90 － 

5 38.58 6.80 5 38.27 － 5 58.26 － 

10 48.95 2.29 10 68.60 0.25 10 76.30 － 

20 88.67 4.48 20 128.34 4.67 20 100.10 － 

75 

1 17.61 1.42 1 32.37 1.81 1 12.67 － 

5 33.42 6.57 5 46.82 － 5 35.76 － 

10 59.27 4.38 10 68.79 7.63 10 67.22 － 

20 78.94 0.31 20 － － 20 102.98 － 
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Figure 5.15 Triaxial residual strength versus sample diameter at different confining 

pressures: (a) β =0°; (b) β =45°; and (c) β =90°. 

5.4.4.2 Anisotropy of triaxial residual strength 

As can be seen from Figure 5.16, the anisotropy of the triaxial residual strength of slate 

is very similar for different specimen sizes. When the applied confining pressure is 1 MPa, 

the residual strength varies little, fluctuating at approximately 25 MPa. As the confining 

pressure increases from 5 to 20 MPa, the anisotropy of the residual strength increases and 

presents a U-shaped curve similar to the findings of (Liao and Hsieh 1999) in argillite, 

with the maxima in the anisotropy curves located at β = 0° and the minima shifting from 

β = 30° to β = 45°. 
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Figure 5.16 Variation of triaxial residual strength of slate with different specimen 

diameters versus β: (a) d=25mm and (b) d=75mm. 
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5.4.4.3 Modified cohesion loss model 

Most recently, Peng and Cai (2019) reviewed various methods including Mohr-Coulomb, 

Joseph-Barron, Hoek-Brown and GSI-softening models, and proposed a cohesion loss 

model for estimating the residual strength of intact rocks according to 

 ( )
0.5

1 3 3i c   = +   (5.15) 

where i  is a dimensionless parameter and c  represents the UCS of intact rock. 
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Figure 5.17 Experimental values of triaxial residual strength and fitted curves based on 

the modified cohesion loss model for slate samples with different sizes: (a) d=25mm; (b) 

d=50mm and (c) d=75mm. 

The cohesion loss model is derived from the generalized Hoek-Brown failure criterion by 

taking the parameter s as zero (the cohesion loss concept) because the value of s is very 

small (<0.01) when GSI ≦ 60. Moreover, the applicability of the cohesion loss model to 

various types of intact rocks has been validated. The cohesion loss model has the 

advantage of passing through the origin in the 1  - 3   space, nonlinearity and simple 

(a) (b) 

(c) 
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form, but neglects the influence of the intermediate principal stress and the inherent 

anisotropy of rock. To extend the model in order to estimate the residual strength of 

transversely isotropic rocks, a modified cohesion loss model is proposed and given as 

 
( )

( )

0.5

1 3 3

0=

c

g

m m e

 





    

    −

 = +


+ −

  (5.16) 

where 
c   is the UCS at a loading-foliation angle of   ; and    is a parameter 

describing the anisotropy effect as a function of β; 0 , m  and g  are constants. 

Table 5.10 Fitting parameters of Eq. (5.16) for residual strengths of slate samples under 

different loading directions. 

β (°) 0 15 30 45 60 90 

d = 25 mm 

c   129.5 115.6 96.1 107.0 147.7 169.1 

   5.1 4.0 3.6 3.4 3.0 2.4 

2R  0.99 0.94 0.85 0.94 1.00 0.94 

d = 50 mm 

c   115.2 95.9 78.8 82.5 121.9 157.2 

   6.0 3.4 4.8 2.6 3.7 2.4 

2R  0.99 0.98 0.69 0.97 0.93 0.95 

d = 75 mm 

c   97.3 87.6 73.7 82.2 110.8 146.7 

   5.9 3.3 2.7 2.3 3.4 2.1 

2R  1.00 0.98 0.98 0.98 0.77 0.97 

The experimental residual strength of slate with different specimen sizes and loading 

directions as well as fitted curves based on the modified cohesion loss model are depicted 

in Figure 5.17, and their fitting parameters are summarised in Table 5.10. The results 

indicate that the modified cohesion loss model captures the relationship between residual 

strength and confining pressure well for slate in this study. To the author's knowledge, 

little research in relation to the residual strength of transversely isotropic rocks takes the 

anisotropy effect into consideration. Although the residual strength data of argillite were 

obtained at different confining pressures and anisotropic orientations (Liao and Hsieh 
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1999), the corresponding UCS data were unknown due to the adopted multiple-failure-

state test method. Thus, the published data cannot be used to validate the model. In the 

future, more systematic investigations into the residual behaviour are needed in order to 

explore the applicability of the modified cohesion loss model to other transversely 

isotropic rocks. 

Additionally, the parameter   varies little with the specimen size, whereas its variation 

with β is evident as illustrated in Figure 5.18. The parameter   gradually decreases as 

the β increases, i.e. ( ) 0.055=2.73 5.56 2.73 e 

 −+ − , attaining the maxima and minima at 

β = 0° and 90°, respectively. Overall,   for the slate ranges between 2 and 6. The big 

difference in   demonstrates again that an anisotropy effect on the residual strength of 

slate exists. 
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Figure 5.18 Variation of parameters   with β. 

5.4.4.4 Ratio between residual and peak strength 

The ratio of residual to peak strength ( r p  ) ranges from 0 to 1, reflecting the transition 

from a highly brittle state to a plastic state. The variations of r p    of different 

transversely isotropic rocks, including sandstone (Gowd and Rummel 1980; Yang et al. 



Chapter 5 

131 

2012), schist and gneiss (Kumar et al. 2010), mudstone (Yinlong et al. 2010), limestone 

and marble (Walton et al. 2015) as well as slate (this study), with the confining pressure, 

are compiled and compared as shown in Figure 5.20. The results show that 
r p   

increases as a function of confining pressure for transversely isotropic rocks, following 

the cohesion-weakening-friction-strengthening (CWFS) model for the brittle failure of 

rock, as demonstrated and verified by Hajiabdolmajid et al. (2002) and Martin and 

Chandler (1994). The model has also been supported recently by both numerical (Gao 

and Kang 2016) and experimental results (Rafiei Renani and Martin 2018; Walton et 

al. 2018).  

 

Figure 5.19 Mobilization of the cohesive and frictional strength in the CWFS model, from 

Ref. (Gao and Kang 2016). ic   and rc   represent the initial and residual cohesive 

strength, respectively; pF  and rF  denote the increasement in frictional strength due 

to the increased confinement at the peak and residual stage, respectively; 
p  and r  

refer to the increased peak and residual strength due to increased confining pressure, 

respectively. 

As illustrated in Figure 5.19, when a rock material is undergoing a triaxial compression 

test, the cohesive strength is mobilized from an initial state and then decreases from the 

onset of microcracking to the residual stage with the crack density increasing, while the 

frictional strength is mobilized at the onset of microcracking and then accumulates until 

it is fully completed when the macrocracks are formed. After increasing the confining 

pressure, the mobilization of the cohesive strength displays limited alteration, but that of 
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the normal stress-dependent frictional strength increases significantly, especially at the 

residual phase when the frictional strength is fully mobilized. As a result, both the peak 

and residual strengths accumulate at the higher confining pressure; nevertheless, the 

residual strength accumulates at a higher rate. It can also account for the importance of 

support applications in solving the issue of the unstable collapse of underground 

structures. 
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Figure 5.20 Variations of ratios of residual strength to peak strength as a function of 

confining pressures for transversely isotropic rocks. 

Additionally, based on the compiled data as shown in Figure 5.20, the lower and upper 

limits of relation between 
r p    and 3   for transversely isotropic rocks are put 

forward by the following two functions. 

(1) Lower limit: 

 0.6

30.061r

p





=   (5.17) 

(2) Upper limit: 
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 0.6

30.077 0.44r

p





= +   (5.18) 

It should be noted that the proposed equations are only applicable to rocks in the brittle 

failure regime. Interestingly, the confining pressure corresponding to the plastic end of 

the lower limit is approximately 105 MPa, coinciding with the UCS on the brittle end for 

various rock types (Tutluoğlu et al. 2015). It is in agreement with the statistical analysis 

of the data from more than 1,100 triaxial tests in Singh et al. (2011) that the critical 

confining pressure for an intact rock can be taken nearly as its UCS. 
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Figure 5.21 Variation of average ratios of residual strength to peak strength with β for 

slate. 

The ratio does not present an evident size effect, and neither does the residual strength. 

The average of the ratios of residual to peak strength obtained from slate specimens of 

different sizes was calculated, the variation of which with β is depicted in Figure 5.21. At 

different confining pressures, the values of r p    generally increase first and then 

decrease as β increases, exhibiting a reverse U-type shape, with the maxima and minima 

located at β = 30° and 90°, respectively. This implies that the failure of slate specimens at 

β = 30° and β = 90° displays the lowest and highest brittleness, respectively, throughout 

the range of confining pressures. 
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5.5 Summary 

In this chapter, size effect and anisotropy of slate, as a transversely isotropic rock, have 

been investigated based on compression tests performed on slate samples with different 

sizes at different confining pressures and foliation orientations with respect to the 

direction of major principal stress. The main conclusions are summarised as follows: 

(1) The Young’s modulus parallel to the transversely isotropic plane exhibits an 

ascending size-effect trend, while the other four elastic constants are insensitive 

to the specimen size. The anisotropy of the apparent elastic modulus of slate can 

be captured by the transversely isotropic model with an acceptable error. 

(2) A descending size-effect relation developed from coal is extended to slate, which 

captures the relationship among uniaxial compressive strength, specimen size and 

loading direction. 

(3) The anisotropy of compressive strength is evident, presenting a U-type, which 

increases with the specimen size and stabilizes for samples larger than a critical 

size. Also, the anisotropy of compressive strength is captured by a cosine relation. 

(4) The size-effect behaviours of uniaxial and triaxial compressive strength are 

similar. By incorporating the size-effect relation for uniaxial compressive strength 

into the modified Hoek-Brown and Saeidi failure criteria, two size-dependent 

failure criteria are proposed and verified against the experimental data of slate. 

They are capable of describing the relationship among specimen size, confining 

pressure, foliation orientation and rock strength under uniaxial and triaxial 

compressive conditions in the brittle regime. The size-dependent Saeidi failure 

criterion is superior to the size-dependent modified Hoek-Brown failure criterion 

in terms of prediction accuracy with a higher nonlinearity.  

(5) No size effect, but evident anisotropy effect, is observed in the triaxial residual 

strength of slate. A cohesion loss model is modified to capture the anisotropic 

residual strength, in which the influence of anisotropy decreases with increasing 

foliation orientation. Two equations delineating the upper and lower boundaries 

for the ratio of residual to peak strength are proposed for transversely isotropic 

rocks.
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CHAPTER 6 THREE-DIMENSIONAL DISCRETE 

ELEMENT SIMULATIONS OF TENSILE FAILURE 

BEHAVIOUR OF A TRANSVERSELY ISOTROPIC 

ROCK 

6.1 Introduction 

Transversely isotropic rocks are widely encountered in civil engineering, mining, 

petroleum engineering and disposal of radioactive waste (Blümling et al. 2007; Chen et 

al. 2017; Meier et al. 2015; Tsang et al. 2012). Anisotropy is one of the most distinct 

characteristics of transversely isotropic rock, such as slate, gneiss, schist, shale, phyllite, 

limestone and claystone, and should thus be taken into consideration when applied in 

practical engineering (Li et al. 2019; Ma et al. 2018). 

Anisotropy’s effect on the tensile behaviour of transversely isotropic rocks has been 

extensively studied for decades using analytical, experimental and numerical approaches 

(Aliabadian et al. 2019; Barla and Innaurato 1973; Celleri et al. 2018; Claesson and 

Bohloli 2002; Duan and Kwok 2016; Hobbs 1964; Ma et al. 2018; Shang et al. 2018; 

Tavallali and Vervoort 2010; Wang et al. 2017b; Xu et al. 2018; Yang et al. 2019). 

The published results of such studies have shown that the tensile behaviour of transversely 

isotropic rocks depends largely on the orientation of weakness planes with respect to the 

loading direction. The Brazilian test is the most commonly used method of investigating 

the tensile strength and failure pattern of transversely isotropic rocks. Moreover, in most 

research, the sample is cored parallel to the orientation of weakness planes and the failure 

pattern under the Brazilian test is regarded as two-dimensional. In fact, even though the 

strike of weakness planes coincides with the sample axis, 3D fracture is likely to be 

observed as illustrated in Figure 6.1. The results observed in slate indicate that failure 

patterns after testing on both sides of the specimen are distinctly different and that the 

fracture section presents a 3D structure when the loading-foliation angle (β) is high. The 

most likely reason for the 3D fracture is deviation of the strike direction of weakness 

planes from the sample axis, the ripple arrangement of the weakness planes, pyrite 

inclusion or other imperfections (Debecker and Vervoort 2009). The 3D effect of 

anisotropy is further demonstrated by the results of Brazilian tests observed in sandstone, 
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gneiss and slate (Dan and Konietzky 2014; Dan et al. 2013; Ding et al. 2019). The 

Brazilian tensile strength and energy storage capacity were found to be associated with 

the orientation of weakness planes with respect to the directions of loading and sample 

axis. 

 

 

 

Figure 6.1 Fracture patterns after testing: front surface (left), rear surface (middle) and 

fracture section (right) of slate samples with different β: (a) 60°; (b) 75° and (c) 90°. 

In this chapter, combined with the experimental results as discussed in Chapter 4, the 

indirect tensile behaviour of transversely isotropic slate was studied with a view to better 

understanding the 3D effect of anisotropy by means of the particle flow code PFC3D, 

(a) 

(b) 

(c) 
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which is based on the discrete element method (DEM). The particle-based DEM allows 

the tracking of crack initiation and propagation and rock failure at both the macro and 

micro scales (Duan and Kwok 2015; Fan et al. 2018; Li et al. 2018). Different 

orientations of weakness planes relative to the directions of loading and sample axis were 

considered. 

 

             (a)                         (b)                         (c)        

Figure 6.2 The PFC3D models of transversely isotropic rock with different β (angle 

between loading direction and weak plane) and ψ (angle between sample axis and weak 

plane) under Brazilian loading conditions: (a) ψ = 0° and 0° ≤ β ≤ 90°; (b) 0° < ψ < 

90° and 0° ≤ β ≤ 90°; and (c) ψ = 90° and 0° ≤ β ≤ 90°. The weak planes (foliation 

planes) were denoted by small green cylinders. 
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6.2 Numerical approach 

Recent studies have demonstrated that the strength and deformation behaviour of 

transversely isotropic rocks can be emulated effectively by 2D DEM models combining 

bonded-particle and smooth-joint contact models (Duan and Kwok 2015; Duan and 

Kwok 2016; Duan et al. 2015; Park and Min 2015; Wang et al. 2016; Xia and Zeng 

2018; Xu et al. 2017; Xu et al. 2018; Yang et al. 2019). Furthermore, these studies have 

revealed that the behaviour of weak planes can be emulated by persistent (Park and Min 

2015; Xia and Zeng 2018; Xu et al. 2017; Xu et al. 2018), nonpersistent (Duan and 

Kwok 2015; Duan and Kwok 2016; Duan et al. 2015) or a mix of persistent with 

nonpersistent SJM (Yang et al. 2019) according to the microscopic structures of weak 

planes embedded in the rock matrix. Nevertheless, 2D modelling is still incapable of 

analysing many practical anisotropic problems, such as borehole instability in oblique 

wells excavated in anisotropic formations (Duan et al. 2018; Meier et al. 2015) and 

estimation of elastic properties for transversely isotropic rocks (Min and Thoraval 2012), 

because stress distributions and associated failure cannot necessarily be captured in two 

dimensions (Park et al. 2018). Consequently, 3D modelling is recommended to 

comprehensively reproduce the mechanical properties of anisotropic rocks. 

To simulate a transversely isotropic rock, two consecutive stages should be carried out: 

(1) modelling of the isotropic rock matrix and (2) modelling of the transversely isotropic 

weak planes (Park and Min 2015; Yang et al. 2019). In the particle-based DEM, the 

rock matrix is represented by an assembly of rigid bonded particles, such as blocks or 

spheres, in three dimensions (Potyondy and Cundall 2004). Based on the principles laid 

out in Section 3.2.2, the flat-joint model (FJM) is adopted to simulate the rock matrix in 

this study, because it overcomes the three intrinsic problems in simulating the hard rock 

using the contact-bond model (CBM) or parallel-bond model (PBM). A disk-shaped 

specimen (D = 50 mm and thickness = 25 mm) and a cylindrical specimen (D = 50 mm 

and L = 100 mm) were generated, comprising 29,290 and 116,029 particles connected by 

flat-joint (FJ) bonds, respectively. The porosity of both specimens was fixed at 39.21 % 

using the deletion method (Ding et al. 2014; Li et al. 2018) to eliminate the influence of 

porosity, which produces substantial variations in strength and elasticity (Schöpfer et al. 

2009). The particle size distributions of the two specimens were also identical, with a 

maximum to minimum particle diameter ratio of 1.5. The model resolution, defined as 
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the average number of particles across the minimum diameter or length of specimen, was 

controlled by the disk-shaped specimen at 20 based on our previous study (Li et al. 2018). 

Additionally, the behaviour of weak planes was modelled using the smooth-joint contact 

model (SJM) developed by Cundall (Mas Ivars et al. 2008). Particles lying on two sides 

of the SJM plane move across one another by sliding along the discontinuity instead of 

around each other. As seen from Figure 4.3, the foliation planes in slate are persistent and 

parallel, so the behaviour of the transversely isotropic slate was modelled by inserting a 

set of persistent and parallel SJMs with a mean spacing (δ) of 5 mm into the isotropic 

rock model. For the disk-shaped specimen under Brazilian tests, the angle between the 

weak plane and the loading direction (β) or the sample axis (ψ) varied from 0° to 90° at 

intervals of 15°, as shown in Figure 6.2. In contrast, for the cylindrical specimen, with 

the loading direction coinciding with the sample axis under uniaxial compression tests (β 

= ψ), β was chosen to be 0°, 15°, 30°, 45°, 60° and 90°, in line with the experiment in 

Chapter 5. 

6.3 Numerical test 

In this section, those microproperties of FJM and SJM relevant for simulating slate were 

calibrated against the experimental results obtained from the uniaxial compression and 

Brazilian tests on slate samples having a diameter of 50 mm. In previous 2D modelling, 

the specimen with ψ =  90° (Figure 6.2c) was treated as isotropic, neglecting the 

influence of weak planes (Duan and Kwok 2015; Xu et al. 2018; Yang et al. 2019). 

However, as mentioned in Section 4.4.3, the experimental result indicated the specimen 

with ψ = 90° after the Brazilian testing split along the loaded diameter accompanying 

the layer activation, which is different from that for isotropic rocks. Accordingly, 

development of an appropriate calibration method for the 3D models was necessary. 
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6.3.1 Calibration procedure 

Start

1. Deformation parameters of particle 

and FJM (Ec, Ec, k
n, ks, kn, ks)

Perform uniaxial compression 

test and check with E0

Calibration needed?
Yes

2. Deformation parameters of SJM (kn, ks)

3. Strength parameter of FJM (cb) 

Perform uniaxial compression test 

and check with E90 and UCS90

Calibration needed?

4. Strength parameter of FJM (σb) 

Perform Brazilian test and 

check with σt_ψ=90°

Calibration needed?

End

No

No

Yes

Yes

5. Strength parameter of SJM (σc) 

Perform Brazilian test and 

check with σt_ψ=0°,β=0°

Calibration needed?

No

No

Yes

6. Strength parameter of SJM (cb) 

Perform Brazilian test and 

check with σt_ψ=0°,β=90°

Calibration needed?

No

Yes

 

Figure 6.3 The flowchart of calibration process for three-dimensional FJM-SJM models. 

The influence of microparameters of FJM and SJM on the macromechanical behaviour 

of DEM models has been studied by Xu et al. (2017; 2018) from a 2D viewpoint. For 

example, they can be important references with which to develop an appropriate 

calibration procedure for 3D DEM models, in which both FJM and SJM are employed, 

for transversely isotropic rock. As shown by the experimental results in Chapter 5, 
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minimum uniaxial compressive strength (UCS) occurs at β = 30°–45°, and the cohesion 

and friction angle of the foliation plane of slate are taken as their averages: 23 MPa and 

35°, respectively. Hence the first approximations of cohesion ( c ) and friction coefficient 

( c  ) of smooth-joint contacts are 23 MPa and 0.7, respectively. A new calibration 

procedure is proposed, as shown in flowchart form in Figure 6.3, that can be described 

by the following steps: 

Step 1: The stiffness of smooth-joint contacts has little effect on the Young’s modulus 

( 0E ) of the specimen when β = 0° under the uniaxial compressive condition. Thus the 

deformation parameters ( , , , , ,n s n s

c cE E k k k k ) of both particle and FJM were adjusted to 

match 0E  through uniaxial compression tests. 

Step 2: When β = 90°, the Young’s modulus ( 90E ) of the specimen depends mainly on 

the stiffness of smooth-joint contacts and the uniaxial compression strength ( 90UCS ) of 

specimen is well correlated to the cohesion of flat-joint contacts. Hence both 90E  and 

90UCS   of the specimen were calibrated through adjustment of the deformation 

parameters (
nk , 

sk ) of SJM and the cohesion ( bc ) of FJM, respectively, by conducting 

uniaxial compression tests. 

Step 3: Because the strength of smooth-joint contacts has little effect on the tensile failure 

strength (
_ =90t 

  ) of a specimen when the specimen axis is perpendicular to the 

transversely isotropic plane (ψ = 90°), the tensile strength ( b ) of FJM was iteratively 

adjusted to match 
_ =90t 

  by Brazilian tests. 

Step 4: The tensile failure strength (
_ =0 , =0t  

 ) of a specimen at ψ = 0° and β = 0° is 

largely determined by the tensile strength ( c ) of SJM, whereas that (
_ =0 , =90t  

 ) at ψ 

= 0° and β = 90° is closely related to the cohesion ( bc ) of SJM. Accordingly, two separate 

series of Brazilian tests for specimens with ψ = 0°, β = 0° and ψ = 0°, β = 90° were 

performed to calibrate c  and bc , respectively. 
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6.3.2 Calibration results 

Table 6.1 Calibrated micro-parameters of the FJM for simulating the rock matrix of slate. 

Micro-parameter Definition Value 

v   Bulk density (kg/m3) 2760 

minR   Minimum particle radius (mm) 0.5 

max min/R R   Ratio of maximum to minimum particle radius 1.5 

ratiog   Installation gap ratio 0.3 

rN   Number of elements in radial direction 1 

N   Number of elements in circumferential direction 4 

B   Bonded element fraction 0.9 

G   Gapped element fraction 0 

cE   Effective modulus of bond (GPa) 97 

/n sk k   Ratio of bond normal to shear stiffness 3.0 

b   Mean bond tensile-strength   SD (MPa) 60  12 

bc   Mean bond cohesion strength   SD (MPa) 180  36 

b   Friction angle of bond (degrees) 0 

   Friction coefficient of bond 0.1 

cE   Effective modulus of particle contact (GPa) 97 

/n sk k   Ratio of particle normal to shear stiffness 3.0 

p   Friction coefficient of particle 0.1 

Following the flowchart shown in Figure 6.3, the microparameters of FJM and SJM for 

simulating the slate were calibrated as listed in Table 6.1 and 6.2. Notably, the slit element 

fraction ( 1S B G  = − − ), regarded as the quantification of crack density (Wu and Xu 

2016), was chosen to be 0.1 so as to take into account the randomly distributed preexisting 

cracks in the slate. The combination of the number of elements in the radial and 

circumferential directions ( 1 4rN N =   ) has been validated to be best suited for 

calculation efficiency (Li et al. 2018). For simplicity, the normal stiffness and shear 

stiffness of SJM are set to be equal, as in previous studies (Duan and Kwok 2016; Duan 
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et al. 2015; Shang et al. 2018; Wang et al. 2016; Xu et al. 2017; Xu et al. 2018). The 

value of the microtensile strength of SJM (3.5 MPa) is lower than the macrotensile 

strength (6.0 MPa) of the disk-shaped specimen at ψ = 0° and β = 0°, because the 

microtensile cracks along the SJM contacts were initiated prior to the peak of the 

macrotensile strength of the specimen, consistent with the findings in Park and Min 

(2015) and Park et al. (2018). 

Table 6.2 Calibrated micro-parameters of the SJM for simulating the foliation of slate. 

Micro-parameter Definition Value 

nk   Normal stiffness (GPa/m) 5800 

sk   Shear stiffness (GPa/m) 5800 

c   Tensile strength (MPa) 3.5 

bc   Cohesion (MPa) 25 

c   Friction coefficient  0.7 

The formula for calculating the indirect tensile strength ( t ) based on Brazilian tests is 

expressed by Eq. (2.11). Two prerequisites for this formula are that (1) the material be 

isotropic and (2) the fracture be initiated by tensile crack from the centre of the disk-

shaped specimen. For the transversely isotropic rock of interest in this research, the 

strength obtained from this formula cannot represent the true tensile strength for most 

cases. Accordingly, the phrase Brazilian failure strength (BFS) rather than Brazilian 

tensile strength (BTS) will be used to describe the result of Eq. (2.11). The UCS, apparent 

Young’s modulus, and BFS, which is based on specimens at ψ = 0°, obtained from the 

experimental and numerical tests are compared in Figure 6.4, which indicates that the 

experimental and numerical results are comparable. Moreover, the BFS of a specimen 

with ψ =  90° obtained by experiment (22.5 MPa) is comparable to that obtained by 

numerical simulation (21.4 MPa) at each loading-foliation angle (β). 
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Figure 6.4 The comparisons between experimental and numerical results of specimens 

with 50-mm-diameter: (a) UCS; (b) apparent Young’s modulus and (c) BFS. 

6.3.3 Parametric study 

Based on the calibrated microparameters, the disk-shaped PFC3D models of slate having 

different foliation spacings, foliation orientations relative to the loading direction and 

sample axes were created to investigate their influences on the tensile behaviour by 

conducting Brazilian tests. The foliation spacings (δ) were chosen to be 2.5 mm, 5.0 mm 

and 7.5 mm. The foliation orientations relative to the loading direction (β) and the sample 

axis (ψ) were altered from 0° to 90° at intervals of 15° as shown in Figure 6.2. The loading 

rate for the Brazilian test simulation was controlled at 0.015 m/s – slow enough to be sure 

of the specimen’s being in a quasistatic equilibrium for each step. The loading platens are 

frictionless. Additionally, three measurement spheres 5 mm in diameter, containing about 

39 particles apiece, were installed at the centre of the disk-shaped specimen along the 

thickness of specimen. In this way, stresses and strains at the centre of the disk on both 

surfaces and the middle plane of specimen were monitored throughout the test. 

(a) (b) 

(c) 
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6.4 Numerical results  

6.4.1 Effect of foliation spacing on tensile behaviour 
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Figure 6.5 The influence of foliation spacing on BFS. 

The variation of BFS of specimens at ψ of 0° with different foliation spacings versus the 

loading-foliation angle is shown in Figure 6.5, which indicates that the influence of 

foliation spacing on BFS is associated with the loading-foliation angle. At β of 0°–30°, 

the influence of foliation spacing on BFS is negligible, whereas at β of 45°–90°, the BFS 

of the specimen is significantly increased by increasing foliation spacing, with a 

maximum deviation percentage of 80 % at β of 90°. The result is different from those 

observed in 2D modelling (Wang et al. 2018) and in direct tensile modelling in three 

dimensions (Shang et al. 2018). Wang et al. (2018) stated that BFS slightly increased 

with increases in spacing irrespective of the loading-foliation angle, demonstrating once 

more that caution should be used when analysing real-world problems in transversely 

isotropic rocks by means of 2D modelling. Shang et al. (2018) concluded that the effect 

of bedding spacing on direct tensile strength was small and could be ignored. This 

discrepancy is most likely attributable to the difference in loading conditions, for 

transversely isotropic rocks fail through different failure mechanisms when loaded in 

tension or compression-tension. Being in good agreement with the experimental results, 

the numerical results obtained from specimens with a foliation spacing of 5.0 mm also 
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demonstrate the feasibility of the adopted microparameters for simulating slate samples. 

 

Figure 6.6 The fracture patterns of specimens with different foliation spacings: (a) 2.5 

mm; (b) 5.0 mm and (c) 7.5 mm. The small green cylinders denoted the foliation planes. 

The tensile and shear cracks of smooth-joint (SJ) contacts were marked in black and blue, 

respectively. The tensile and shear cracks of flat-joint contacts were marked in red and 

cyan, respectively. 

Additionally, the fracture patterns of specimens having different foliation spacings are 

compared in Figure 6.6. When the loading-foliation angle is low (0°–30°), fracture 

patterns are similar regardless of foliation spacing. The specimens mainly fail by tensile 

cracks along the weak plane corresponding to the layer activation failure observed in the 

experiment in Section 4.4.3, except for the specimen having δ of 2.5 mm at β of 30°. 

Interestingly, the exception of fracture pattern, which is composed of mixed failures in 

the weak plane and rock matrix, is not associated with variations in BFS. As analysed at 

the micro scale, the negligible effect of foliation spacing on BFS can be explained by the 

invariable percentage of FJ tensile microcracks (see Figure 6.7). Overall, with β 

increasing from 45° to 90°, failure patterns of specimens transform from mixed failure to 

nonlayer activation failure. The difference among failure patterns for specimens having 

different foliation spacings is increasingly obvious, becoming most evident at β = 90°. 

When spacing is 2.5 mm, the weak planes hinder fracture propagation from the loading 

points towards the centre of the specimen so that the centre part of the specimen remains 
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intact after testing – a phenomenon commonly observed in transversely isotropic rocks 

(Debecker and Vervoort 2009; Xu et al. 2017), as depicted in Figure 6.8. In contrast, 

when spacing is increased to 7.5 mm, the specimen fails by tensile splitting of the rock 

matrix accompanying secondary cracks along the weak planes. Similarly, increase in BFS 

with foliation spacing at β of 45°–90° is attributable to the increased percentage of FJ 

tensile microcracks, as illustrated in Figure 6.7. 
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Figure 6.7 Variation of percentage of FJ tensile micro-cracks at failure versus the 

foliation spacing. 

 

                             (a)                          (b) 

Figure 6.8 Fracture patterns observed in samples of: (a) slate (Debecker and Vervoort 

2009) and (b) phyllite (Xu et al. 2017) under Brazilian tests. 
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6.4.2 Effect of three-dimensional foliation orientation on tensile strength 

Based on the elastic constants, Claesson and Bohloli (2002) put forward a formula for 

calculating the tensile strength of transversely isotropic rocks as given as Eq. (2.12). 

Because this formula takes only the angle between loading direction and weak plane (β) 

into consideration by postulating the strike of weak planes parallel to the sample axis (ψ 

= 0°), the applicability of this formula to transversely isotropic rocks remains open to 

question when considering the influence of 3D foliation orientation (Ding et al. 2019). 

Accordingly, further research into this issue is needed that goes beyond the scope of this 

study. 

 

Figure 6.9 Comparison between lab results and numerical results for slate samples at ψ 

= 0°. 

The tensile strength of slate samples at ψ of 0° was obtained by Eq. (2.12) based on 

experimental results in Chapter 4. The distributions of lab results at different β are 

depicted in Figure 6.9. The tensile stress ( xx  ) at the centre of specimen at failure is 

usually regarded as the tensile strength of a specimen per Claesson and Bohloli (2002) 

and Yu et al. (2006), taking the average of xx  measured by three measurement spheres 

installed at the centre in numerical tests. Along with numeric BFS, the distribution of 

tensile strength and numerical xx  at the centre as a function of β are compared as shown 
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in Figure 6.9, indicating that both numerical BFS and xx  at the centre can reasonably 

accurately represent the tensile strength of a specimen, with numerical BFS seeming more 

superior than xx  at the centre from the viewpoint of the overall trend. Accordingly, BFS 

based on Eq. (2.11) is used hereinafter to study the influence of 3D foliation orientation 

on tensile strength. 
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Figure 6.10 Influences of (a) β and (b) ψ on BFS of slate models in PFC3D. 
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Figure 6.11 Normalized BFS of slate samples with different β and ψ obtained: (a) in this 

study; (b) by Ding et al. (2019) and (c) by Dan et al. (2013). 

Figure 6.10 shows the influences of β and ψ on BFS of slate PFC3D models. When 0° ≤ 

ψ ≤ 30°, values of BFS of slate models at each β are very similar, as shown in Figure 

6.10a, implying that the BFS of slate models depends primarily on β rather than on ψ, 

displaying a gradually increasing trend with β. When 45° ≤ ψ ≤ 90°, the variation of 

BFS of slate models is insensitive to β, so that BFS increases linearly with ψ, as illustrated 

in Figure 6.10b. Furthermore, the effect of β and ψ on the anisotropy of BFS of slate 

samples is investigated by normalizing the results to 1 at ψ = 0° and β = 0°. As seen in 

Figure 6.11, the variation of anisotropy ratios with β and ψ obtained by our numerical 

study is similar to those obtained in laboratory tests by Ding et al. (2019) and Dan et al. 

(2013), at 45° ≤  ψ ≤  90°, which exhibits an ascending trend with ψ and is nearly 

independent of β. However, the results are different at 0° ≤  ψ <  45° in these three 

(a) (b) 

(c) 

β
 (

°)
 

β
 (

°)
 

β
 (

°)
 



Chapter 6 

151 

studies. For instance, in our research, the anisotropy ratio of BFS generally increases with 

β at 0° ≤ ψ ≤ 30°, and the coupling effect of β and ψ is evident at 30° ≤ ψ < 45°. For 

Ding et al.’s results, the coupling effect of β and ψ on the anisotropy ratio of BFS is 

dominant at this range. In relation to Dan et al.’s results, the anisotropy ratio of BFS grows 

as ψ increases at 0° ≤ ψ < 45° and 0° ≤ β ≤ 30°, whereas the coupling effect plays a 

role in the rest of β and ψ. Overall, the BFS of slate samples presents evident anisotropic 

variation, with the values of anisotropy ratio of BFS reaching 3.58, 2.85 and 5.24 for, 

respectively, this study, Ding et al. (2019) and Dan et al. (2013). 

6.4.3 Effect of three-dimensional foliation orientation on failure mechanism 

In the particle-based DEM, microcracks can be monitored and counted during the fracture 

process to analyse the damage evolution. When the local stress acting on the contact 

exceeds the pre-setting strength, it breaks in a tensile or shear fashion and produces one 

microcrack. In our FJM–SJM modelling, four types of microcracks are generated: FJ 

tensile crack (FJ-T), FJ shear crack (FJ-S), SJ tensile crack (SJ-T) and SJ shear crack (SJ-

S). FJ cracks form only in the rock matrix, whereas SJ cracks form only in the weak 

planes. Reflecting space limitations, Figure 6.12 shows only the stress and microcrack 

evolution of slate models at foliation orientations (ψ–β) of 0°–0°, 0°–45°, 0°–90°, 45°–

0°, 45°–45°, 45°–90° and 90°–45° under Brazilian tests. Some critical points (a, b, c and 

d) and their corresponding damage location and degree are also displayed in Figure 6.12. 

In general, three distinct stages are identified based on microcrack number, increase rate 

and stress–strain curve: 

Stage I: There are nearly no microcracks generated in this stage, and the stress–strain 

curve is in a linear portion. 

Stage II: The number of microcracks increases at a relatively low rate, and the stress–

strain curve deviates from the linear portion, often accompanied by stress fluctuation, 

which indicates irreversible damage in the specimen. 

Stage III: The number of microcracks accumulates at a relatively high rate to a high level 

with the formation of macrofractures, and the stress–strain curve presents a descending 

trend. 
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Figure 6.12 Stress and micro-crack evolution of slate models in PFC3D: (a) 0°－0°; (b) 

0°－45°; (c) 0°－90°, (d) 45°－0°; (e) 45°－45°; (f) 45°－90° and (g) 90°－45°. 

 

 



Chapter 6 

153 

 

     a: 1.0 × 10-3          b: 1.37 × 10-3        c: 1.45 × 10-3        d: 1.55 × 10-3 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0

2

4

6

8

10

12

Stage  III

Stage  II

 Tensile stress

 crk_FJ_t

 crk_FJ_s

 crk_SJ_t

 crk_SJ_s


t (

M
P

a)

Strain (10
-3
)

Stage  I

d

c

b

a

0

2000

4000

6000

8000

10000

C
u
m

u
la

ti
v
e 

co
u
n
t

 

FJ-S crack

FJ-T crack

SJ-S crack

SJ-T crack

 

(b)  

Figure 6.12 (continued) 

 

 

 

 



Chapter 6 

154 

 

     a: 1.4 × 10-3         b: 2.48 × 10-3        c: 3.53 × 10-3         d: 4.86 × 10-3 

0 1 2 3 4 5

0

2

4

6

8

10

12

14

16

18


t (

M
P

a)

Strain (10
-3
)

c

0

2000

4000

6000

8000

10000

C
u
m

u
la

ti
v
e 

co
u
n
t

 Tensile stress

 crk_FJ_t

 crk_FJ_s

 crk_SJ_t

 crk_SJ_s

a

Stage  I

b

Stage  II Stage  III

d

 

FJ-S crack

FJ-T crack

SJ-S crack

SJ-T crack

 

(c)  

Figure 6.12 (continued) 
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(d)  

Figure 6.12 (continued) 
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Figure 6.12 (continued) 
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(f)  

Figure 6.12 (continued) 
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Figure 6.12 (continued). 

For ψ–β of 0°–0°, SJ tensile microcracks initiate at the centre (point a) and propagate 

towards the top and bottom loading points; after the peak stress of point b, secondary 

cracks appear near the loading points along the weak planes and grow towards the centre 

of the disk. The damage of model is dominated by SJ tensile cracks. 

For ψ–β of 0°–45°, at stage I, few sporadic microcracks are noticed (point a); in stage II, 
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the FJ tensile and SJ shear cracks increase at the same level, concentrated at the loading 

ends (point b), until stage III, when the FJ and SJ tensile cracks increase rapidly and the 

SJ tensile cracks exceed the SJ shear cracks. The fracture begins at the loading points and 

propagates along the weak planes (point c), then propagates across the weak planes in the 

rock matrix, forming an arc-shaped macrofracture (point d). 

For ψ–β of 0°–90°, at stage II, stress fluctuations (point b) occur, with FJ tensile cracks 

increasing at a high rate and SJ shear cracks increasing at a low rate; fracture of the model 

starts from the top and bottom loading points and evolves towards the centre of the disk; 

ultimately the model fails by the tensile cracks through the rock matrix, accompanying 

secondary cracks along the weak planes concentrated at the loading ends. 

When the strike of weak planes coincides with the sample axis (ψ = 0°), the fracture 

pattern of the model is largely dependent of β and in line with the experimental results. 

The variation of fracture process with β is also consistent with the laboratory observations 

as shown in Figure 4.17, which depicts the stress-strain curves and failure patterns of slate 

specimens at different loading directions. The transverse strains (No. 4 to 8) along the 

loaded diameter of specimen were measured by a series of horizontal strain gages with a 

length of 20 mm, enough long to capture the fracture initiation point within the specimen. 

Accordingly, based on the maximum extension strain criterion (Li and Wong 2013), the 

fracture process can be estimated as follows: the specimen at β of 0° tends to fail starting 

from the disc center, while at other β the specimen tends to fail starting from the regions 

of load application where the largest transverse strain first arrives. Moreover, as β 

increases, the numerical model tends to fail by tensile failure in the rock matrix, as 

demonstrated by the increasing percentage of FJ tensile micro-cracks, shown in Figure 

6.13a. This also accounts for the increase of BFS with an increase in β. 

For ψ–β of 45°–0°, nearly no microcracks appear at stage I, but in stage II the SJ tensile 

cracks increase rapidly in a stepped fashion and the FJ tensile cracks increase at a 

relatively low rate; at stage III the SJ tensile cracks increase at a relatively low rate but 

the FJ tensile cracks increase at a high rate, although both reach the same level by the 

point of ultimate stress. The fracture of the model starts from the centre of the disk, along 

the weak planes, and propagates towards the loading points, accompanying cracks 

forming in the rock matrix near the loading ends (point c), after which the cracks in the 
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rock matrix grow from the two loading points to the centre of the disk. Seen from the top 

view of the model, the fracture formed in the rock matrix is aligned with the direction of 

the sample axis, being inclined to the fracture induced in the weak planes (point d). 

For ψ–β of 45°–45°, the FJ tensile and SJ shear cracks increase at the same level as at 

stage II; at stage III the FJ tensile, SJ shear and SJ tensile cracks grow at a higher rate. 

The fracture of model begins at the loading points by simultaneous appearance of shear 

cracks along the weak planes and of tensile cracks in the rock matrix (point b), then 

propagates towards the centre of the disk (point c). At the ultimate stage, a complex 3D 

fracture is formed in the model (point d). 

For ψ–β of 45°–90°, the FJ tensile, SJ shear and SJ tensile cracks evolve in a pattern 

similar to that seen for ψ–β of 45°–45°. However, their fracture patterns are very different. 

At β of 90°, the fragments of model at the loading ends, which are formed by intersecting 

cracks along the weak planes with those in rock matrix, are spalled from the model, 

leaving its centre part still intact after testing. 

Finally, ψ of 90° is a special case in which the fracture pattern of the model is independent 

of β because the loading direction is inherently parallel to the weak planes. Fracture of 

the model begins simultaneously at the loading points by FJ and SJ tensile cracks and 

propagates towards the centre of model until the crack coalescence. The cracks in the rock 

matrix and along weak planes intersect perpendicular to each other, as depicted in Figure 

6.12g. 

To obtain a better understanding of the influence of microcrack type on fracture pattern, 

the ratios of the FJ tensile crack, FJ shear crack, SJ tensile crack and SJ shear crack to all 

cracks are calculated at failure. The proportional variations of microcracks at different ψ 

and β are shown in Figure 6.13. The results show that the FJ and SJ tensile cracks are the 

main components of the microcracks, indicating that the slate model fails mainly by 

tension. The proportional variations of microcracks at ψ of 0°–30° are similar, implying 

the absence of influence imposed by ψ. The portion of FJ tensile cracks increases 

continuously with increasing β, and the portion of FJ shear cracks is minimal irrespective 

of β.  
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Figure 6.13 Variations of percentage of micro-cracks developed in slate models at 

different β with varying ψ: (a) 0°; (b) 15°; (c) 30°; (d) 45°; (e) 60°; (f) 75° and (g) 90°. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 



Chapter 6 

162 

At low β, the very high portion of SJ tensile cracks indicates that the model fails by tension 

along the weak plane. With β increasing, the SJ tensile cracks tend to disappear. 

Meanwhile, the portion of SJ shear cracks decreases as β increases from 45° to 90°, with 

the tensile fracture in the rock matrix dominating the failure mode of the model. At 

intermediate β, the portions of FJ tensile and SJ shear cracks are comparable, indicating 

that the model fails by a mixed shear along the weak plane with tensile across the rock 

matrix fracture, consistent with laboratory observations. 

Additionally, at ψ of 45°–75°, the most distinct difference between proportional variations 

of microcracks from those at ψ of 0°–30° is that the portions of FJ tensile cracks are nearly 

constant as β varies in the range 30°–90°. The variations of portions of microcracks with 

β at each ψ reduce with increasing ψ, almost disappearing at ψ = 75°. This can explain 

why the BFS of slate model is insensitive to β in this range of ψ. Furthermore, the level 

of portion of FJ tensile cracks increases with increasing ψ, which is responsible for the 

increased BFS of model. A ψ of 90° is a special case in which the proportional variation 

of microcracks is independent of β, with FJ and SJ tensile cracks dominating the failure 

of the model. Although the portion of FJ tensile cracks at ψ = 90° is not the highest seen, 

the corresponding BFS is. This can be attributed to a special failure mode in which the 

model fails by tensile splitting through the rock matrix along the loading direction, 

behaving like an intact specimen without weak planes. Thus the effective portion of FJ 

tensile cracks is far higher when excluding SJ cracks. 

6.5 Discussion 

To further study the effect of weak planes on principal stress distribution, 57 measurement 

spheres with diameter l = 2.5 mm, containing approximately 5 particles apiece, were 

installed along the loading plane of the disk-shaped model. As shown in Figure 6.14, these 

measurement spheres were arranged in three columns, located in the middle plane, near 

the front and rear surfaces. It should be noted that stress is a continuum variable and does 

not actually exist anywhere in the particle assembly owing to the discreteness of DEM 

model (Fan et al. 2018). In essence, the stress at one point is taken as the average in the 

measurement region. Hence, the diameter of measurement spheres cannot be too large to 

accurately reproduce the stress at a particular point. 
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Figure 6.14 Arrangement of measurement spheres along the loading plane in the disc-

shaped model under the Brazilian test. Diameter of measurement spheres l = 5 mm. 

Based on the assumption that a material is homogeneous, isotropic and linear elastic, 

Hondros (1959) proposed a 2D stress solution for the specimen under the diametric 

loading over finite arcs according to, 
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  (6.2) 

where   and rr  represent the tensile and compressive stresses, respectively; P is the 

exerted force; R and t are the radius and thickness of the disk-shaped specimen, 

respectively; 2α is the arc over which the force is applied; and r is the distance from the 

centre of the disk. Notably, tensile stress is regarded as positive. This solution is 

applicable to conditions of both plane stress and plane strain. 
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Figure 6.15 Comparison of principal stresses along the compressed diametral line (AA’): 

(a) between the numerical modeling results and Hondros’ solutions at the crack-initiation 

stress for slate models with ψ－β of 45°－45°; and (b) obtained from the continuum 

method by Li and Wong (2013). The green dashed circle denotes the Brazilian disc 

specimen.  

(a) 

(b) 
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Figure 6.16 Comparison of tensile principal stresses along the compressed diametric line 

(AA’) for slate models with different thicknesses: (a) 50 mm and (b) 100 mm. 

As an example, the principal stresses of models at ψ–β of 45°–45° were recorded along 

the loading plane at the crack-initiation stress (corresponding to point a in Figure 6.12e), 

as illustrated in Figure 6.15a. The principal stresses based on the Hondros solutions (2α 

= 12°) are also compared with those obtained by the DEM simulation in Figure 6.15a, 

demonstrating that: (1) the results of numerical modelling follow the overall trend of the 

(a) 

(b) 
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theoretical solution that along the loaded diameter AA′ the vertical stresses (
yy  ) are 

compressive and increase with the distance from the centre of the disk; and (2) the 

horizontal stresses ( xx  ) are tensile in the middle section (–0.8R < r < 0.8R) and 

compressive near the two loading points. However, values of xx   and 
yy   obtained 

from numerical modelling fluctuate dramatically around those predicted by the Hondros’ 

solution due to the inherent heterogeneity of particle size distribution and the weak planes 

induced anisotropy. For example, the tensile stress or shear stress at the weak plane does 

not exceed the micro-tensile strength (3.5 MPa) or cohesion (25 MPa) of SJM, 

respectively, while those at the rock matrix can be far higher owing to a higher strength 

of FJM.  

In addition, the tensile stress distributions of primary interest in this study on the end 

surfaces and the middle plane are different, particularly near two loading points, which is 

to some extent in agreement with that obtained from the continuum method by Li and 

Wong (2013). As can be seen in Figure 6.15b, the tensile stresses on the surface are higher 

than those on the middle plane in Li and Wong’s results. The variations in tensile stress 

along the direction of thickness were attributed to the shape effect of the Brazilian disk 

specimen (Yu et al. 2006). In the isotropic material, the stress distributions on the two 

end surfaces are symmetrical with respect to the middle plane and taken as identical (Li 

and Wong 2013; Yu et al. 2006). In contrast, in this transversely isotropic model, there 

exists a big difference in stress distributions on the two end surfaces because of the 

existence of weak planes. To get a better understanding of the shape effect of Brazilian 

disk specimen on the stress distribution, the thickness of the disk specimen is increased 

to 50 mm (t = 2R) and 100 mm (t = 4R), and the corresponding tensile stress distributions 

on the middle plane and end surfaces are compared in Figure 6.16 along with those 

observed in the specimen with a thickness of 25 mm (Figure 6.15a). The results indicate 

that with increasing the thickness of specimen, the differences in tensile stress 

distributions on the end surfaces and middle plane increase, and so do the heterogeneity 

and the anisotropy of tensile stress distributions. Besides, the deviation between tensile 

stresses obtained from the numerical modelling and the Hondros’ solution accumulates 

as the thickness of specimen increases. It demonstrates again that the indirect tensile 

behaviour of transversely isotropic rock is a 3D problem rather than a 2D problem. The 

increased shape effect further results in the BFS increasing from 12.0 MPa to 14.1 MPa, 
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which is contradictory to the finding in isotropic rocks that BFS reduces with the 

thickness of disk-shaped specimen (Mellor and Hawkes 1971; Yu et al. 2006). This 

discrepancy likely arises from different failure modes. Under Brazilian tensile conditions, 

isotropic rock is generally failed by a tensile fracture, but the transversely isotropic rock 

at ψ–β of 45°–45° is failed by a complicated mixed tensile and shear fracture as shown in 

Figure 6.12e. Accordingly, it is inferred that the shape effect in transversely isotropic 

rocks is associated with the foliation orientation relative to the loading direction, which 

has been rarely reported. 

6.6 Summary 

Two-dimensional modelling is incapable of analysing many practical anisotropic 

problems, e.g., that of borehole instability in oblique wells excavated in anisotropic 

formations, estimation of elastic properties for transversely isotropic rocks and 3D 

fracture after Brazilian testing for transversely isotropic rocks. Thus a 3D model for slate 

was generated using the embedded FJM and SJM in DEM to investigate the influences 

of foliation spacing and 3D foliation orientation on the tensile behaviour under indirect 

tensile conditions. A new calibration procedure was proposed for the DEM modelling of 

the transversely isotropic rock. Based on the preceding numerical analysis, the following 

conclusions can be drawn: 

(1) At β of 0°–30°, the influences of foliation spacing on tensile strength and failure 

mode are negligible, but at β of 45°–90°, the tensile strength is significantly 

increased and failure mode is also impacted by increasing foliation spacing with 

effects of foliation spacing reaching the maximum at β of 90°. 

(2) At 0° ≤ ψ ≤ 30°, the tensile strength of slate models is independent of ψ and 

increases with β, but at 45° ≤ ψ ≤ 90°, variations in the tensile strength of slate 

models are insensitive to β, with tensile strength increasing linearly with ψ. The 

coupling effect of β and ψ is illustrated by variations in the anisotropy ratio of 

tensile strength, evident at 30° ≤ ψ < 45°. 

(3) The tensile fracture in the rock matrix and along the weak plane are the main 

fracture patterns of the slate model under Brazilian tests. At low ψ and β, fracture 

of the slate model begins at the centre of the disk and propagates towards the top 

and bottom loading points – opposite to the behaviour seen for high ψ and β. The 
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fracture process is consistent with laboratory observations. Moreover, at 

intermediate and high ψ, the fracture pattern is 3D and the influence of 3D 

foliation orientation must be considered. 

(4) The proportional variations of micro-cracks at failure with ψ and β well account 

for the effect of 3D foliation orientation on tensile strength. It is also found that 

the portion of flat-joint tensile cracks is mainly responsible for the strength of the 

slate model. 

(5) The introduction of weak planes into isotropic rock model increases both 

heterogeneity and anisotropy of stress distributions, as well as the shape effect in 

transversely isotropic rock. Contrary to that in isotropic rocks, the shape effect is 

thought to facilitate the indirect tensile strength of transversely isotropic rock. 

Considering the 3D anisotropy effect, a more reliable solution to calculate the 

indirect tensile strength for transversely isotropic rocks can be derived. 
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CHAPTER 7 CONCLUSIONS AND 

RECOMMENDATIONS 

In this chapter the main findings and conclusions of the present study are summarised and 

some recommendations for future work are presented. 

7.1 Conclusions 

This thesis aims to investigate anisotropy and size effect in transversely isotropic rock 

under different stress conditions, such as indirect tensile, uniaxial and triaxial 

compressive testing. In particular, this study’s main contributions include (1) performing 

a series of laboratory tests, including indirect tensile, uniaxial and triaxial compressive 

tests, on slate with different specimen sizes at different anisotropic angles; (2) 

investigating variations in elastic properties, indirect tensile strength, uniaxial 

compressive strength, triaxial compressive strength, triaxial residual strength and failure 

pattern with specimen size and anisotropic angle; (3) incorporating size dependency into 

the analysis of failure criterion for transversely isotropic rock under triaxial compressive 

conditions and (4) investigating the effects of model size and particle size distribution on 

the macro-mechanical properties of isotropic rock using a flat-joint model, so as to further 

study the effect of three-dimensional anisotropy on tensile behaviour of the transversely 

isotropic rock using the combined flat-joint and smooth-joint model. Based on these 

studies, its major contributions and conclusions are as follows: 

1. The pure effects of model size and particle size distribution on the macro-mechanical 

properties of the isotropic rock are revealed by eliminating the influence of porosity. 

As model size increases, uniaxial compressive strength, crack-initiation stress, 

Young’s modulus and Poisson’s ratio first decrease and then stabilize, whereas the 

indirect tensile strength follows a generalized descending trend best fitted by fracture 

energy and multifractal size-effect models for which fitting constants are functions 

of grain size heterogeneity. All the macro-mechanical properties decrease with grain 

size heterogeneity. Additionally, a commonly accepted standard for the selection of 

model size and particle size is established for three-dimensional flat-jointed models. 

2. Five independent elastic constants are determined by combining indirect tensile test 

and FLAC3D simulation. The Young’s modulus in the transversely isotropic plane 
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presents an ascending size effect, whereas the Young’s modulus and shear modulus 

perpendicular to the transversely isotropic plane exhibit a reverse size effect. The 

Poisson’s ratios parallel to and normal to the transversely isotropic plane do not show 

an evident size effect. The size effects on the elastic properties can be attributed to 

the combined influence of weak planes and near-surface damage during sample 

preparation. Moreover, the values of elastic properties obtained from compressive 

tests are different than those obtained from indirect tensile tests. The anisotropy of 

the apparent elastic modulus follows the transversely isotropic model with an 

acceptable degree of error. 

3. The size effect and anisotropy in the indirect tensile strength are correlated with each 

other. At the low loading–foliation angle, the indirect tensile strength presents a 

typical descending size effect, whereas at the high loading–foliation angle it presents 

an initially ascending and then descending size effect. The transition of size-effect 

trends is closely associated with the failure mechanism at different loading directions. 

Furthermore, a unified size-effect relation including two equations is proposed and 

validated against the experimental data to capture the relationship among indirect 

tensile strength, specimen size and loading–foliation angle. 

4. The indirect tensile strength of slate is associated with not only the loading–foliation 

angle but also the foliation orientation relative to the sample axis. The indirect tensile 

strength is independent of the foliation orientation and increases with loading–

foliation angle at foliation orientations of 0° to 30°, whereas at foliation orientations 

of 45° to 90° it is insensitive to the loading–foliation angle and increases with 

foliation orientation. The coupling effect of loading–foliation angle and foliation 

orientation is illustrated by the variation of anisotropy ratio of indirect tensile strength, 

most evident at the foliation orientation of 30° to 45°. Furthermore, the proportional 

variations of micro-cracks at failure account for the effect of three-dimensional 

foliation orientation on the indirect tensile strength at the microscale. 

5. The tensile fracture in the rock matrix and along the weak plane are the main fracture 

pattern of slate specimen under indirect tensile conditions. At low loading–foliation 

angle and foliation orientation, the fracture initiates at the centre of the disc and then 

propagates towards the top and bottom loading points, the reverse of what is seen at 

other loading–foliation angles and foliation orientations. It is also found that the 

horizontal strain along the compressed diameter can be used to estimate the fracture 
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initiation point in the laboratory test. The fracture processes observed in numerical 

and experimental tests are consistent. Moreover, at low foliation orientation, the 

fracture pattern is approximately two-dimensional, whereas at the intermediate or 

high foliation orientation the fracture pattern is three-dimensional and rather complex. 

6. A size-effect relation developed from an orthotropic rock, coal, is extended to a 

transversely isotropic rock, slate, which captures the relationship among uniaxial 

compressive strength, specimen size and loading–foliation angle. The anisotropy of 

compressive strength follows a cosine relation, with the degree of anisotropy being 

dependent on both specimen size and confining pressure.  

7. The size-effect behaviours of uniaxial and triaxial compressive strengths are found 

to be similar. Through incorporation of the size-effect relation for uniaxial 

compressive strength into the modified Hoek–Brown and Saeidi failure criteria, two 

size-dependent failure criteria are proposed and verified against the experimental 

data of slate. They are capable of describing the relationship among specimen size, 

anisotropic angle, confining pressure and rock strength under uniaxial and triaxial 

compressive conditions. The size-dependent Saeidi failure criterion is superior to the 

size-dependent modified Hoek–Brown failure criterion in terms of the prediction 

accuracy with a higher nonlinearity. Moreover, the former one can be applicable to 

both brittle and ductile regimes, whereas the latter one is limited in the brittle regime. 

However, both size-dependent failure criteria are not applicable to the transversely 

isotropic rock in the tensile stress condition. 

8. Evident anisotropy, but no size effect, exists in the triaxial residual strength of slate. 

A cohesion loss model is improved to capture the anisotropic residual strength, in 

which the influence of anisotropy decreases with increasing anisotropic angle. The 

ratio of residual to peak strength increases as a function of confining pressure for 

transversely isotropic rocks, following the cohesion-weakening–friction-

strengthening model for the brittle failure of rock. Two equations delineating the 

range for the ratio of residual to peak strength are proposed for transversely isotropic 

rocks. 

7.2 Recommendations for future works   

Although some progress has been made in proposing size-effect models and size-
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dependent failure criteria for the analysis of size effect and anisotropy in transversely 

isotropic rocks and investigating the effect of three-dimensional anisotropy on indirect 

tensile behaviour in the present study, certain limitations do leave room for further 

improvement: 

1. The size effect on macro-mechanical properties for isotropic rock is investigated 

without introducing the discrete fracture network in Chapter 3, because the pre-

existing flaws or pores within the specimen are unknown. To accurately reproduce 

the size effect in numerical modelling, a quantitative analysis of microstructure by 

means of X-ray computed tomography scan should be conducted. 

2. Although the proposed size-effect relation in Chapter 4 can capture the relationship 

among indirect tensile strength, specimen size and loading–foliation angle, it is only 

suitable for the transversely isotropic rock when the strike of weak planes coincides 

with the sample axis. This is because the adopted formula for calculating the tensile 

strength is applicable only to the two-dimensional problem. Accordingly, considering 

the three-dimensional anisotropy effect, a more capable solution for indirect tensile 

strength in transversely isotropic rocks is necessary that can further develop a size-

effect model for three-dimensional analysis of transversely isotropic rocks under the 

indirect tensile condition. 

3. Although two size-dependent failure criteria are proposed and validated against the 

experimental data of slate in Chapter 5, an underlying assumption should not be 

neglected – that the severity of size effect on compressive strength is independent of 

confining pressure. The observed results indicate that the severity of size effect 

increases with confining pressure when sliding failure along the weak planes, 

contrary to the common viewpoint that confining pressures suppress the size effect 

in rocks. A critical confining pressure for transversely isotropic rocks must exist 

below which the confining pressure facilitates the size effect but beyond which it 

reverses when sliding failure along the weak planes occurs. Accordingly, a wide 

range of confining pressures is suggested for future size-effect study in transversely 

isotropic rocks so as to incorporate the influence of confining pressure on size effect 

into the size-dependent failure criterion. 

4. The two proposed size-dependent failure criteria are applicable only to transversely 

isotropic rock in conventional triaxial conditions. However, the three principal 
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stresses are usually not the same in the practical engineering, and the intermediate 

principal stress plays an important role in the strength of rock. Hence study of the 

size effect and anisotropy in transversely isotropic rocks subject to a true triaxial 

stress state is also a meaningful research topic. 

5. The effect of three-dimensional anisotropy in transversely isotropic rocks has been 

studied only under indirect tensile tests in Chapter 6. It should be applied in real-

world projects, such as to address stability problems in boreholes, tunnels or caverns 

excavated obliquely in anisotropic formations. Considering the effects of far-field 

stress anisotropy, rock anisotropy, shape and size of underground structures, a three-

dimensional numerical study is recommended that would use a hybrid 

continuum/dicontinuum method. 

6. In this study, the applicability of the findings focused on elastic property, indirect 

tensile strength, uniaxial and triaxial compressive strength and triaxial residual 

strength have been validated only for slate, because data on various tests of 

transversely isotropic rocks considering the size effect are scarce in the literature. It 

is suggested that a systematic study of size effect and anisotropy should be carried 

out on different types of anisotropic rocks, including sedimentary rocks and 

metamorphic rocks, and that the proposed relation or criterion be calibrated against 

all the data. A database of representative values of model parameters for various rocks 

should be established. 
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